Abrotec

CONSTRUCTION D'UN DEPOT DE BUS

rue Paul Emile Victor

RIVERY (80)

Rapport n°NO15 0575 - 2 ind.2

Selon devis n°NO15 0575 – 2 v2 du 21/09/2016

Marché n 2015 / 152-0

<u>PHASE 2:</u> ETUDE GÉOTECHNIQUE DE CONCEPTION (mission de type G2) - Phase Avant-Projet (AVP)

Géotechnique Diagnostic Essais

MISSION G2 AVP

ETUDE GÉOTECHNIQUE DE CONCEPTION

PHASE AVANT-PROJET (AVP)

Ce dossier comprend:

- ➤ 1 rapport
- Annexe 1 : Plan d'implantation des investigations in situ
- ➤ Annexe 2 : Coupes des sondages Bâtiment tertiaire
- Annexe 3 : Coupes des sondages Bâtiment atelier
- Annexe 4 : Coupes des sondages Station-Service et Station de Lavage
- Annexe 5 : Coupes des sondages Parkings VL
- Annexe 6 : Coupes des sondages Parking Bus
- Annexe 7 : PV des essais de perméabilité
- > Annexe 8 : Résultats des analyses en laboratoire

<u>Agence en charge du dossier :</u> **Abrotec Nord Picardie** - ZA de la Belleforière - rue Francisco Ferrer 59286 ROOST-WARENDIN - **Tél :** 03.27.90.13.77. - **Fax :** 03.27.90.41.66. - @: nord@abrotec.fr

Indice	Date	Chargé d'affaire / VISA	Contrôle interne / VISA	Contrôle externe / VISA	Observations		
1	04/11/16	Yoan BOUTRY	Sébastien MICKIEWICZ	-	Etablissement du document provisoire		
2	23/11/16	Yoan BOUTRY	Sébastien MICKIEWICZ	Rédouane LOUHAB	Version définitive - Résultats labo		
			Hichiawiz /				

SOMMAIRE

	UATION ET VUE AERIENNE	
	ON	
l.	Définition de l'opération, mission	
I.1.	Mission	
1.2.	Documents communiqués	
I.3.	Intervenants	
II.	Descriptions générales du site, de l'existant et du projet	
II.1.	Existants	
II.2.	Caractéristiques du projet	
II.3.	Historique du site	
II.4. II.5.	Contexte géologique	
	Risques naturels	
III.	Programme de reconnaissance	
 III.1.	Sondages de reconnaissance	
III.1. III.2.	Essais mécanique in-situ	
III.2. III.3.	Equipement des sondages	
III.4.	Essais de perméabilité in situ	
III.5.	Essais en laboratoire	
	DES INVESTIGATIONS	
IV.	Analyse géologique du site	
V.	Piézométrie – Niveau d'eau	. 23
VI.	Perméabilité	
VII.	Essais en laboratoire	
VII.1.	Identifications des sols	
VII.2.	Essai de compactage	
VII.3. VII.4.	Essai de Traitement	
VII.4. VII.5.	Résultats des essais mécaniques en laboratoire	
VIII.	Analyse et synthèse géomécanique	
VIII.1.	Analyse géomécanique générale	
VIII.1.	Synthèse mécanique – Bâtiment tertiaire	
VIII.3.	Synthèse mécanique – Bâtiment atelier	
VIII.4.	<i>,</i>	
RECOMMAN	DATIONS GEOTECHNIQUES	
IX.	Synthèse générale	. 30
X.	Adaptations au projet	. 30
XI.	Justification des fondations superficielles	
XI.1.	Définition des fondations	
XI.1. XI.2.	Règlements utilisés	
XI.3.	Etats limites de résistance du sol	
XI.4.	Tassements	
XI.5.	Efforts horizontaux - État limite ultime de glissement	
XI.6.	Remarques	
XII.	Réalisation des terrassements	
XIII.	Talutage en plein masse	. 38
XIV.	Niveau bas	
XV.	VOIRIES - ParkingS	40
XV.1.	Portance du sol support	
XV.1.	Couche de forme	
0	RECEPTION	
XV.3.	Prédimensionnement de la structure de chaussée – Parkings VL	
XV.4.	Prédimensionnement de la structure de chaussée – Voiries et parkings BUS	
XV.5.	Généralités	
XVI.	Précautions particulières de conception et d'exécution	
XVI.1.	Fondations	43
XVI.2.	Construction	
XVI.3.	Précautions de mise en œuvre	44
XVI.4.	Eléments de structure	44
XVII.	Suites à donner	
XVIII.	Aléas géotechniques et conditions contractuelles	. 44

PLAN DE SITUATION ET VUE AERIENNE

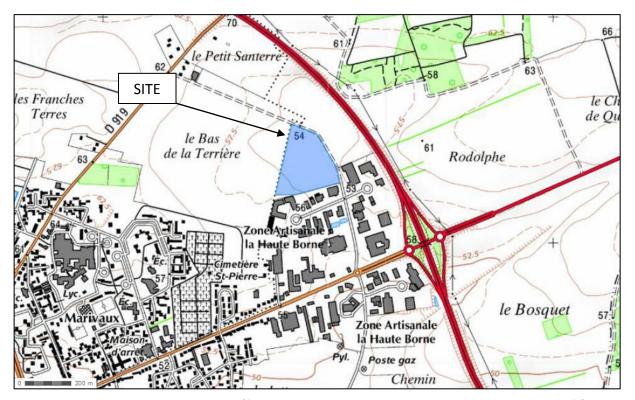


Figure 1 : Localisation du projet (fond de carte topographique, source geoportail.gouv.fr)

Figure 2 : Localisation du projet (vue aérienne, source geoportail.gouv.fr)

PRESENTATION

I. DEFINITION DE L'OPERATION, MISSION

I.1. MISSION

A la demande et pour le compte d'Amiens Métropole, ABROTEC a reçu pour mission de réaliser, dans le cadre de la construction d'un nouveau dépôt de bus, une étude géotechnique de conception en phase Avant-Projet sur un terrain situé rue Paul Emile Victor (parcelles cadastrées n°000-ZA-136, 000-ZA-16 et17) à RIVERY (80).

Cette mission a permis de définir :

- les hypothèses géotechniques à prendre en compte au stade de l'avant-projet,
- les principes de construction envisageables (terrassements, soutènements, pentes et talus, fondations, assises des dallages et voiries, améliorations de sols, dispositions générales vis-à-vis des nappes et avoisinants),
- une ébauche dimensionnelle par type d'ouvrage géotechnique,
- la pertinence d'application de la méthode observationnelle pour une meilleure maîtrise des risques géotechniques.

Il s'agit de missions de type G₂ phase AVP, selon la norme NF P 94-500 (Version de Novembre 2013).

Une étude géotechnique préliminaire (phases ES et PGC) a été menée par nos soins en Décembre 2015 dans le cadre du projet actuel.

Elle ne comprend pas (liste non exhaustive):

- l'évolution dans le temps de l'hydrogéologie locale et la détermination des NPHE;
- les études de pollutions éventuelles (sols et nappe);
- la reconnaissance des anomalies géotechniques situées en dehors de l'emprise des investigations (vides et/ou zones décomprimées notamment) ;
- la stabilité des remblais existants ou le dimensionnement des ouvrages à mettre en œuvre pour l'assurer ;
- les études pyrotechniques du sous-sol;
- la recherche de vestiges anthropiques sur le site;
- le dimensionnement structurel des fondations (largeur, ferraillage ...) qui reste à la charge d'un BET structure.

Elle est par ailleurs limitée par les hypothèses du projet qui nous ont été transmises au démarrage de notre mission.

1.2. DOCUMENTS COMMUNIQUES

Pour cette étude, les documents suivants nous ont été communiqués :

- CCT pour la réalisation de la mission G2 AVP daté du 11 juillet 2016 ;
- Plans, coupes, vues du dossier APS datés du 11 juillet 2016 ;
- Plan topographique, en format DWG.

I.3. INTERVENANTS

Au moment de notre étude, les intervenants connus étaient les suivants :

Maitre d'ouvrage	AMIENS METROPOLE
Architecte	L'HEUDE & L'HEUDE
BET TCE	SNC LAVALIN
BET Espaces Verts	ateliergeorges

II. DESCRIPTIONS GENERALES DU SITE, DE L'EXISTANT ET DU PROJET

II.1. EXISTANTS

Le terrain étudié correspond actuellement à une parcelle agricole.

Figure 3 : Photographies de la parcelle étudiée (06/11/2015)

La récolte des betteraves a été effectuée avant notre intervention.

Le terrain étudié était libre de toute construction visible. On notera la présence d'une ligne aérienne de RTE, y compris d'un pylône implanté sur la partie Ouest du site.

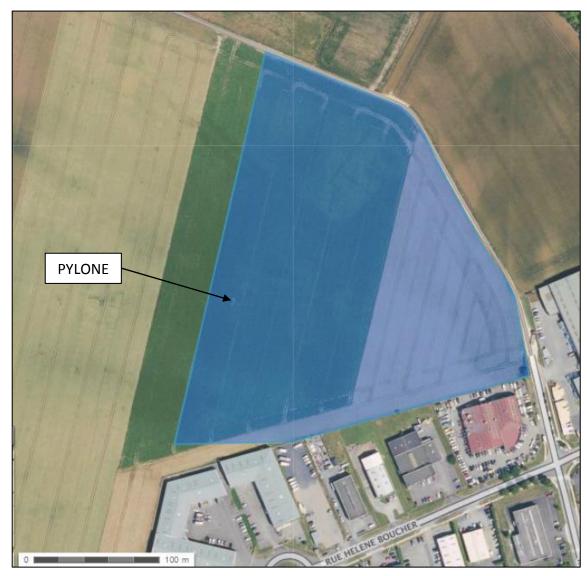


Figure 4 : Localisation du pylône (vue aérienne, source geoportail.gouv.fr)

II.2. CARACTERISTIQUES DU PROJET

II.2.A. DESCRIPTION DU PROJET

Dans le cadre de l'évolution du réseau de transports en commun de l'agglomération amiénoise, une augmentation notable du parc de bus est à prévoir. Pour y faire face, un nouveau dépôt de bus est projeté.

Ce nouveau dépôt assurera plusieurs fonctions, comme listées dans le CCTP du marché dont un extrait (page 2) est disponible ci-dessous :

- o la station-service, la station de lavage et les locaux attenants pour les opérations de contrôle et de maintenance quotidiennes, lavage extérieur, nettoyage intérieur, pleins de carburants et de consommables,... Il convient de préciser qu'Amiens Métropole a engagé une réflexion visant à retenir un matériel roulant spécifiquement réservé à l'exploitation des lignes de BHNS, et ne fonctionnant pas au tout diesel alors qu'aujourd'hui le réseau est intégralement exploité avec un parc de véhicules à motorisation diesel. Le GNV, l'hybride électrique et l'alimentation électrique des bus à certains points d'arrêt et au futur dépôt sont des solutions envisagées à ce jour;
- le remisage du matériel roulant, des véhicules de services, d'intervention et d'entretien constitutif du parc actuel;
- le remisage du matériel roulant, des véhicules de services, d'intervention et d'entretien qui viendront renforcer le parc actuel à l'horizon 2030 avec un renforcement intermédiaire en 2018;
- l'atelier de maintenance du matériel roulant, en vue de :
 - la préparation au contrôle technique réglementaire,
 - le nettoyage des compartiments moteurs et du châssis,
 - la maintenance préventive (calendaire et kilométrique) des autobus,
 - la maintenance des organes déposés,
 - les travaux de carrosserie et sur polyester, avec passage en tunnel de peinture,
 - la ligne de contrôle pour la préparation au contrôle technique et le contrôle des organes sécuritaires,
 - l'examen de la partie sous les bus via un pont élévateur ;
- les locaux d'exploitation intégrant la prise de service des conducteurs, l'unité PCC, le SAIEV et les services centraux du délégataire (direction, service RH, service administratif et financier, service marketing, etc...);
- des locaux de détente pour le personnel d'exploitation et de maintenance;
- le poste de garde;
- les locaux sociaux ;
- o le parking des véhicules du personnel de conduite, du personnel administratif et des visiteurs ;
- le parking des véhicules du personnel de maintenance et matériels de service;
- les zones de manœuvre pour les camions lors des livraisons des équipements et du magasin;
- les bâtiments et les zones de remisage nécessaires à la maintenance des installations fixes (achat approvisionnement et stockage des pièces de consommation et de rechange).

Les différentes parties du projet seront traitées séparément dans la suite du rapport. Cinq zones ont été définies :

- Le bâtiment tertiaire ;
- Le bâtiment atelier ;
- La station-service et la station de lavage ;
- Les parkings VL;
- Les parkings Bus.

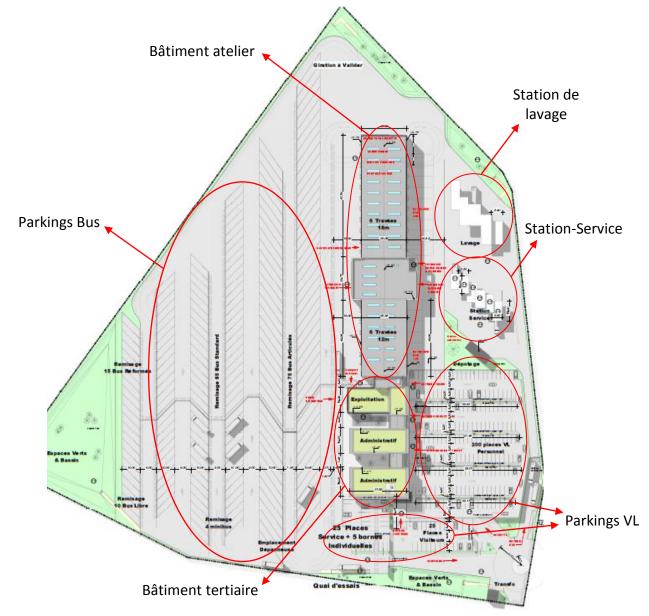
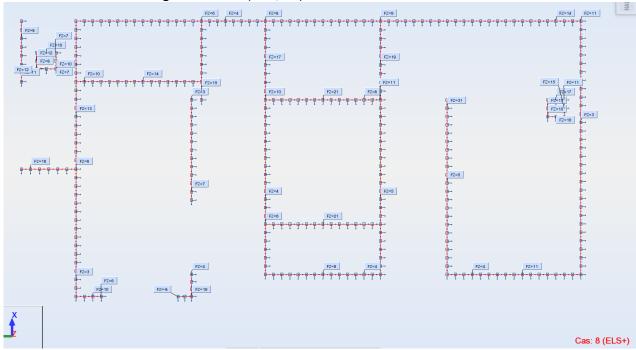
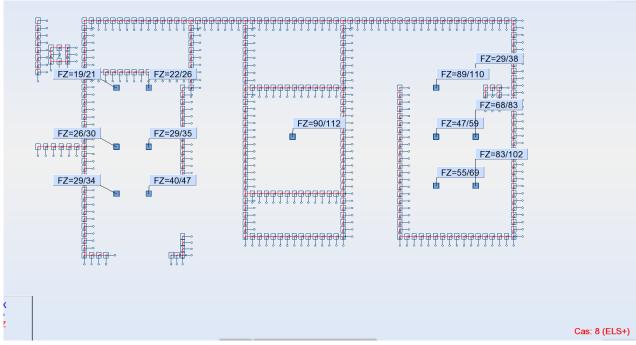
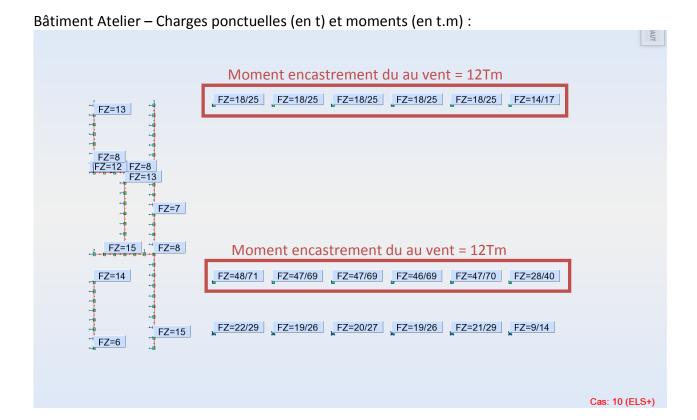


Figure 5 : Localisation des différentes zones du projet (Plan de masse Projet, source geoportail.gouv.fr)


II.2.B. CHARGES DU PROJET

Les descentes de charges suivantes nous ont été communiquées :


- Charges linéaires (bât tertiaire) : 3 à 31 t/ml;
- Charges ponctuelles (bât tertiaire): 19 à 112 t.


Bâtiment tertiaire - Charges linéaires (en t/ml) :

Bâtiment tertiaire – Charges ponctuelles (en t):

II.3. HISTORIQUE DU SITE

D'après l'étude des photographies aériennes, il semblerait que le site n'ait jamais été bâti à l'époque moderne.

Figure 6 : vue aérienne actuelle (à gauche) et vue aérienne de 1952 (à droite) (Photographies aériennes, source remonterletemps.ign.fr)

II.4. CONTEXTE GEOLOGIQUE

D'après la carte géologique d'AMIENS n°46 (éditée par le BRGM - Bureau de Recherches Géologiques et Minières, échelle 1/50 000) et notre expérience locale, la géologie attendue est la suivante :

- éventuellement des limons des plateaux « LP » notamment sur la partie Sud du site (d'Age Quaternaire); il s'agit d'une formation généralement limoneuse pouvant être également argileuse ou sableuse;
- éventuellement des colluvions « C » notamment sur les parties centre et nord de la parcelle (d'Age Quaternaire) ; il s'agit d'une formation limoneuse et crayeuse ;
- de la craie Sénonienne « *c*_{4 *b-c* » (d'Age Crétacé supérieur) ; il s'agit d'une craie blanche relativement résistante à l'érosion et pouvant contenir des silex noirs et tuberculés.}

Compte tenu de l'environnement du site, ces formations peuvent être surmontées par des remblais anthropiques.

Figure 7 : Extrait de la carte géologique d'AMIENS n°46 (source geoportail.gouv.fr / BRGM)

II.5. RISQUES NATURELS

Vis-à-vis de la prévention du risque sismique et au sens des décrets n° 2010-1254 et 2010-1255 du 22 octobre 2010, la zone d'implantation du projet se situe en zone 1, soit un aléa très faible pour lequel il n'y a pas de préconisations particulières.

Vis-à-vis du phénomène de retrait-gonflement des argiles, le site se trouve en zone d'aléa faible.

Figure 8 : Extrait de la carte d'aléa de retrait-gonflement des argiles (source georisques.gouv.fr)

Aucune cavité souterraine n'est référencée sur la commune de RIVERY. Toutefois, notons que ce risque concerne les communes limitrophes, comme l'indique la carte de recensement des cavités (connues et cartographiables).

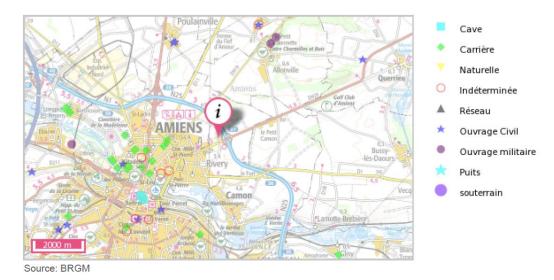
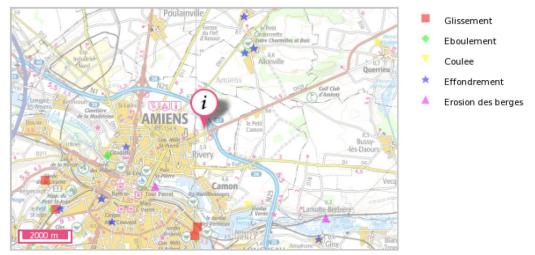



Figure 9 : Extrait de la carte de recensement des cavités souterraines connues et cartographiables (source georisques.gouv.fr)

De la même façon, aucun mouvement de terrain n'est recensé sur le territoire communal mais les communes limitrophes sont concernées par ce risque.

Source: BRGM-MEDDE

Figure 10 : Extrait de la carte de recensement des mouvements de terrain (source georisques.gouv.fr)

D'après les données consultables sur le site officiel de la prévention des risques majeurs, <u>www.prim.net</u>, la commune de RIVERY fait l'objet de :

Bassin de risque	Plans	Prescrit le / Prorogé le	Enquêté le	Approuvé le	Modifié le/ Revisé le	Annexé au PLU le	Déprescrit le / Annulé le / Abrogé le
vallée de la Somme	PPRn Inondation - Par ruissellement et coulée de boue	25/04/2001 / -	21/02/2004	01/12/2004	-	-	- / 10/12/2009 / -
vallée de la Somme	PPRn Inondation - Par remontées de nappes naturelles	25/04/2001 / -	21/02/2004	01/12/2004	-	-	- / 10/12/2009 / -
vallée de la Somme	PPRn Inondation	25/04/2001 / -	16/02/2012	02/08/2012	-	-	-/-/-
vallée de la Somme	PPRn Inondation - Par ruissellement et coulée de boue	25/04/2001 / -	16/02/2012	02/08/2012	-	-	-/-/-
vallée de la Somme	PPRn Inondation - Par remontées de nappes naturelles	25/04/2001 / -	16/02/2012	02/08/2012	-	-	-/-/-

D'après la même source d'informations, la commune a fait l'objet des arrêtés de reconnaissance de catastrophes naturelles suivants :

Type de catastrophe	Début le	Fin le	Arrêté du	Sur le JO du
Type de Catastroprie	Debut le	FILLIE	Arrete du	Sui le 30 du
Inondations et coulées de boue	20/07/1992	21/07/1992	16/08/1993	03/09/1993
Inondations, coulées de boue et mouvements de terrain	25/12/1999	29/12/1999	29/12/1999	30/12/1999
Inondations et coulées de boue	18/03/2001	25/04/2001	26/04/2001	27/04/2001
Inondations par remontées de nappe phréatique	18/03/2001	25/04/2001	26/04/2001	27/04/2001

Vis-à-vis du phénomène de remontées des nappes, le site se trouve en zone de sensibilité faible.

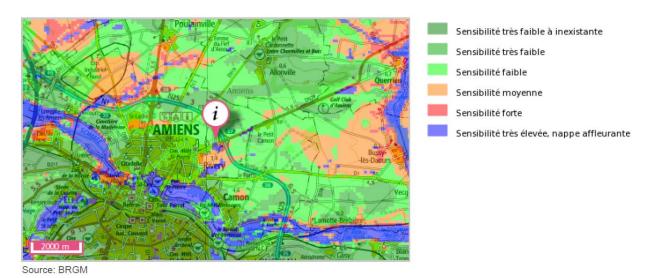


Figure 11 : Extrait de la carte du risque d'inondation par remontée de nappe (source georisques.gouv.fr)

D'après le site gouvernemental prim.net, la commune de RIVERY est répertoriée dans la liste des Territoires à Risque important d'Inondation (TRI) :

Nom du TRI	Aléas	Cours d'eau	Arrêté du préfet coordonnateur de bassin	Arrêté stratégies locales	Arrêté préfet/parties prenantes	Arrêté d'approbation de la stratégie locale	Arrêté TRI national
TRI Amiens	Inondation - Par une crue à débordement lent de cours d'eau	fleuve la somme	26/12/2012	10/12/2014	-	-	-

On notera également la présence de la commune dans l'Atlas de Zone Inondable de la Somme (prim.net) :

Aléa	Nom de l'AZI	Diffusion le
Inondation	Somme (département de la Somme)	01/01/2003

Toutefois, la zone d'étude se situe hors zones à risque des PPRi de la vallée de la Somme et de ses affluents.

RECONNAISSANCE DES SOLS

III. PROGRAMME DE RECONNAISSANCE

Les sondages et essais réalisés in situ sont présentés dans les tableaux suivants.

Le plan d'implantation des investigations est joint en annexe n°1 et les résultats des sondages et essais sont joints en annexes n°2 à n°7.

L'implantation des points de sondages a été réalisée au mieux des conditions d'accès et au mieux de la précision des plans remis pour la campagne de reconnaissance géotechnique.

Les cotes des têtes des sondages sont celles du terrain naturel au moment de notre intervention en Octobre 2016.

Le terme profondeur utilisé dans le présent rapport prend comme référence le niveau du terrain actuel (noté TA) au droit de chacun des sondages.

III.1. SONDAGES DE RECONNAISSANCE

Les sondages de reconnaissance suivants ont été réalisés :

Type de sondage	N° de sondage	Profondeur atteinte (m/TA)	Cote altimétrique de la tête du sondage (NGF)
	ST1	3.0	54.4
	ST2	3.0	54.4
	ST3	3.0	55.6
	ST4	3.0	53.6
	ST5	3.0	54.0
	ST6	3.0	54.5
	ST7	3.0	53.6
	ST8	3.0	53.3
	ST9	3.0	53.3
Sondage semi-destructif à la tarière de Ø 114 mm	ST10	3.0	53.8
	ST11	3.0	52.9
	ST12	3.0	52.8
	ST13	3.0	53.1
	ST14	3.0	53.4
	ST15	3.0	53.9
	ST16	12.0	53.9
	ST17	12.0	52.8
	ST18	12.0	53.0
	ST19	12.0	53.2

Type de sondage	N° de sondage	Profondeur atteinte (m/TA)	Cote altimétrique de la tête du sondage (NGF)
	SP1	20.6	53.3
	SP2	15.7	54.4
Sondage destructif paramétré au tricône de Ø 64 mm	SP3	15.8	52.9
Solidage destructif parametre au tricolle de Ø 64 mm	SP4	15.6	52.9
	SP5	20.0	53.9
	SP6	11.0	53.1
	SC1	6.0	53.5
Sondage carotté rotatif de Ø 90 mm	SC2	6.7	53.2
Sondage carotté rotatif de Ø 114 mm	SC3	6.5	53.1
	PM1	1.5	53.0
	MAT1	5.0	56.0
	MAT2	1.0	53.5
Favilla à la valla vaécaviava de 12 T	MAT3	1.3	54.0
Fouille à la pelle mécanique de 12 T	MAT4	4.0	54.6
	MAT5	3.0	54.5
	MAT6	3.0	52.9
	MAT7	2.0	53.0

Il est indiqué sur les coupes de sondages semi-destructifs, les éléments suivants :

- coupe détaillée des sols.
- résultat des essais in situ.

Il est indiqué sur les coupes de forages destructifs paramétrés, les éléments suivants :

- coupe approximative des sols (les forages étant du type destructif, l'interprétation a été faite uniquement d'après l'examen des cuttings et des paramètres de forages);
- diagraphie des paramètres enregistrés :

✓ VIA : vitesse instantanée d'avancement (m/h)

✓ PO : pression appliquée sur l'outil de forage (bar)

✓ PI : pression d'injection (bar)

✓ CR : couple de rotation (bar)

Il est indiqué sur les coupes de sondages carottés, les éléments suivants :

- coupe détaillée des sols ;
- pourcentage de carottage.

Les photographies des caisses et des prélèvements de carottes intactes de sols conservées sous gaine PVC sont fournies à la suite des coupes de sondages.

Il est indiqué sur les puits de reconnaissance à la pelle :

- coupe détaillée des sols ;
- prélèvements d'échantillons remaniés ;
- observations à l'ouverture de la fouille ;
- photographie du puits.

<u>Nota</u>: Les feuilles de sondages peuvent également contenir des informations complémentaires dont les niveaux d'eau éventuels, les pertes de fluide d'injection, incident de forage, etc.

III.2. ESSAIS MECANIQUE IN-SITU

En complément, les essais in situ suivants ont été réalisés :

Type d'essai mécanique in situ	N° de sondage	Nombre d'essais
	SP1	20
	SP2	15
Essai prossiomátrique pormo NE DO4 110 1	SP3	15
Essai pressiométrique - norme NF P 94-110-1	SP4	15
	SP5	10
	SP6	10

Essais pressiométriques:

Les résultats sont portés sur les coupes de forage, avec pour chaque essai :

•	module pressiométrique	Em (MPa)
•	pression limite nette	pl* (MPa)
•	pression de fluage nette	pf* (MPa)
•	rapport	Em/pl*

III.3. EQUIPEMENT DES SONDAGES

Le sondage noté SP5 a été équipé de tubes PVC piézométriques pour le relevé du niveau statique de la nappe. Le détail de cet équipement est repris dans le tableau ci-dessous :

Sondage de référence	Dénomination	Profondeur (m/TA)	Diamètre int./ext. (mm)	Hauteur tube plein (m)	Hauteur tube crépiné (m)	Type de protection de tête
SP5	Pz1	20.9	36/40	0.0 à 2.0	2.0 à 20.9	tête métallique hors sol (h=63 cm)

Par ailleurs, un relevé piézométrique de cet équipement est en cours, à raison de 4 relevés sur une année.

NOTA : Il était initialement prévu de poser cet équipement au droit du sondage SP1 ; afin de ne pas gêner les investigations archéologiques, celui-ci a été déplacé en SP5.

III.4. ESSAIS DE PERMEABILITE IN SITU

Dans le cadre de la présente étude, des essais de perméabilité ont été réalisés sur le site. Le détail de ces essais est repris dans le tableau ci-dessous :

Type d'essai de perméabilité in situ	Dénomination	Profondeur (m/TA)	
	MAT1	4.2 à 5.0	
Essai MATSUO (à la fosse)	MAT2	0.6 à 1.0	
	MAT3	0.7 à 1.3	
	MAT4	3.1 à 4.0	
	MAT5	2.5 à 3.0	
	MAT6	1.0 à 1.5	
	MAT7	1.4 à 2.0	

III.5. ESSAIS EN LABORATOIRE

Les analyses suivantes ont été réalisées conformément à notre offre :

Identification des sols	Sondage	Nombre	Norme
	ST1	1	
	ST2	1	
	ST3	1	
	ST4	1	
Classification dos sals (CTD)	ST6	1	NE D11 200
Classification des sols (GTR)	ST8	1	NF P11-300
	ST9	1	
	ST9	1	
	ST11	1	
	ST12	1	

Identification des sols	Sondage	Nombre	Norme
	ST16	1	
	ST17	1	
	ST18	1	
	ST19	1	
	SC1	1	
	SC2	1	
	SC3	1	
Essai de compactage à l'essai Protor Normal	PM1	1	NF P94-093
	ST1	1	
	ST2	1	
	ST3	1	
	ST4	1	
	ST6	1	
Indice Portant Immédiat (IPI)	ST9	1	NF P94-078
maice Portain immediat (iPi)	ST9	1	INI F34-076
	ST11	1	
	ST16	1	
	ST17	1	
	ST18	1	
	ST19	1	

Caractéristiques mécaniques	Sondage	Nombre	Norme
	SC1	2	
Cisaillement direct consolidé lent (CD)	SC2	2	NF P94-071
	SC3	2	
Essai d'aptitude au traitement d'un sol fin	PM1	1	NF P94-100

	Analyse chimique	Sondage	Nombre	Norme
Mes	sure de l'agressivité des sols vis-à-vis des bétons,	ST16	1	
	comprenant :	ST17	1	EN 206-1
· me	esure du dosage en sulfates, mesure de l'acidité	ST18	1	EIN 200-1
	Bauman Gully	ST19	1	

RESULTATS DES INVESTIGATIONS

IV. ANALYSE GEOLOGIQUE DU SITE

L'ensemble des résultats permet de dresser la coupe géotechnique schématique ci-après (sous de la terre végétale d'épaisseur 10 à 20 cm environ) :

- → H1 / des **limons** marron parfois crayeux à cailloutis et nodules de craie. Il s'agit vraisemblablement des colluvions (Quaternaire) ;
- H2 / des limons sableux beige à sables limoneux beige et plus ou moins crayeux. Il s'agit vraisemblablement d'un faciès compris dans les formations des limons des plateaux (Quaternaire);
- ▶ H3a / de la craie altérée beige. Il s'agit vraisemblablement de la frange supérieure altérée du substratum crayeux du Sénonien (Crétacé supérieur);
- → H3b / de la craie blanche, reconnue jusqu'à la base des sondages profonds. Il s'agit vraisemblablement du substratum crayeux du Sénonien (Crétacé supérieur).

Sondage	Profondeur de la base de l'horizon H1 (m/TA) / Cote de la base de l'horizon H1 (NGF)	Profondeur de la base de l'horizon H2 (m/TA) / Cote de la base de l'horizon H2 (NGF)	Profondeur de la base de l'horizon H3a (m/TA) / Cote de la base de l'horizon H3 (NGF)	Profondeur de la base de l'horizon H3b (m/TA) / Cote de la base de l'horizon H4 (NGF)
ST1	-	≥3.0 / ≤51.4		
ST2	0.7 / 53.7	≥3.0 / ≤51.4		
ST3	1.4 / 54.2	≥3.0 / ≤52.6		
ST4	-	1.3 / 52.3	≥3.0 / ≤50.6	
ST5	0.6 / 53.4	1.4 / 52.6	≥3.0 / ≤51.0	
ST6	0.2 / 54.3	1.3 / 53.2	≥3.0 / ≤51.5	
ST7	0.7 / 52.9	1.5 / 52.1	≥3.0 / ≤50.6	
ST8	0.3 / 53.0	2.0 / 51.3	≥3.0 / ≤50.3	
ST9	0.3 / 53.0	≥3.0 / ≤50.3		
ST10	-	1.5 / 52.3	≥3.0 / ≤51.8	
ST11	0.8 / 52.1	1.3 / 51.6	≥3.0 / ≤49.9	
ST12	0.7 / 52.1	1.3 / 51.5	≥3.0 / ≤49.8	
ST13	1.0 / 52.1	1.5 / 51.6	≥3.0 / ≤50.1	
ST14	0.1 / 53.3	1.0 / 52.4	≥3.0 / ≤50.4	
ST15	-	0.3 / 53.6	≥3.0 / ≤50.9	
ST16	0.2 / 53.7	1.5 / 52.4	3.5 / 50.4	≥12.0 / ≤41.9
ST17	0.1 / 51.3	1.5 / 49.8	4.5 / 48.3	≥12.0 / ≤40.8
ST18	0.2 / 52.8	1.0 / 52.0	3.5 / 49.5	≥12.0 / ≤41.0
ST19	0.2 / 53.0	1.0 / 52.2	3.0 / 50.2	≥12.0 / ≤41.2
SC1	0.4 / 53.1	1.5 / 52.0	2.0 / 51.5	≥6.0 / ≤47.5
SC2	0.7 / 52.5	2.0 / 51.2	3.0 / 50.2	≥6.7 / ≤46.5

Sondage	Profondeur de la base de l'horizon H1 (m/TA) / Cote de la base de l'horizon H1 (NGF)	Profondeur de la base de l'horizon H2 (m/TA) / Cote de la base de l'horizon H2 (NGF)	Profondeur de la base de l'horizon H3a (m/TA) / Cote de la base de l'horizon H3 (NGF)	Profondeur de la base de l'horizon H3b (m/TA) / Cote de la base de l'horizon H4 (NGF)
SC3	0.3 / 52.8	1.1 / 52.1	3.2 / 52.9	≥6.5 / ≤46.6
SP1	0.5 / 52.8	1.0 / 52.3	4.5 / 48.8	≥20.6 / ≤32.7
SP2	0.7 / 53.7	-	3.5 / 50.9	≥15.7 / ≤38.7
SP3	0.8 / 52.0	-	2.5 / 50.4	≥15.8 / ≤37.1
SP4	0.9 / 52.0	-	2.5 / 50.4	≥15.6 / ≤37.2
SP5	0.4 / 53.5	1.0 / 52.9	2.5 / 51.4	≥20.1 / ≤33.8
SP6	0.3 / 52.8	1.5 / 51.6	2.2 / 50.9	≥11.0 / ≤42.1
PM1	0.3 / 52.7	1.4 / 51.6	≥1.5 / ≤51.5	
MAT1	0.5 / 55.5	≥5.0 / ≤51.0		
MAT2	-	≥1.0 / ≤52.5		
MAT3	0.6 / 53.4	≥1.3 / ≤52.7		
MAT4	-	0.9 / 53.7	≥4.0 / ≤50.6	
MAT5	-	0.9 / 53.6	≥3.0 / ≤51.5	
MAT6	0.6 / 52.3	-	≥3.0 / ≤49.9	
MAT7	0.3 / 52.7	1.4 / 51.6	≥2.0 / ≤51.0	

Remarques:

L'épaisseur des différents horizons peut varier notablement d'un point à un autre du terrain étudié.

Les formations crayeuses H3a et H3b peuvent contenir des blocs durs et de toute dimension (silex notamment).

On notera que la nature de l'horizon H2 correspond à la transition entre les limons H1 et la craie H3. Il s'agit d'un sol provenant de l'altération très avancée du substratum crayeux. Ça différenciation avec l'horizon H3a est parfois difficile. La nature de l'horizon H2 est plus sableuse dans la partie Sud-Ouest de la parcelle, de plus son épaisseur y est bien supérieure.

Les éventuels remblais sont susceptibles de contenir des éléments de toute nature et des blocs de toute taille et des surépaisseurs peuvent être rencontrées en tout point du site.

L'objet de notre mission n'est pas de détecter une éventuelle contamination des sols par des matières polluantes.

La description des terrains traversés et la position des interfaces comportent des imprécisions inhérentes à la méthode de forage destructif (tricône).

V. PIEZOMETRIE – NIVEAU D'EAU

Aucun niveau d'eau n'a été observé au droit des sondages à l'issue de leur réalisation en Octobre 2016, à l'exception du sondage SP1 où un niveau a été observé à 9.4 m/TA en fin de forage. Toutefois, il ne s'agit ici que d'un artéfact lié à la méthode de foration employée (destructif avec injection d'eau).

Le piézomètre Pz1 a été relevé le 19/10/2016. Aucun niveau d'eau n'y a été observé. Néanmoins, un suivi sur une année est en cours sur cet équipement.

Toutefois, on ne peut exclure la présence de circulations anarchiques notamment dans les formations superficielles en période pluvieuse.

VI. PERMEABILITE

Les résultats des essais de perméabilité réalisés ainsi que leur interprétation sont repris dans le tableau suivant :

Essai réalisé	Profondeur de l'essai (m/TA)	Horizon testé	Perméabilité (m/s)
MAT1	4.2 à 5.0	H2	6,3.10 ⁻⁵
MAT2	0.6 à 1.0	H1	1,1.10 ⁻⁵
MAT3	0.7 à 1.3	H2	4,1.10 ⁻⁵
MAT4	3.1 à 4.0	H3a	1,6.10 ⁻⁴
MAT5	2.5 à 3.0	H3a	7,6.10 ⁻⁴
MAT6	1.0 à 1.5	H3a	2,8.10 ⁻⁵
MAT7	1.4 à 2.0	H3a	6,2.10 ⁻⁴

Au vu des résultats ci-dessus et des résultats des essais menés lors de la campagne précédente, on pourra retenir les perméabilités suivantes :

- de l'ordre de 5,0.10⁻⁶ m/s au sein de l'horizon H1;
- de l'ordre de 5,0.10⁻⁵ m/s au sein de l'horizon H2;
- de l'ordre de 2,0.10⁻⁵ m/s sur le toit de l'horizon H3a;
- de l'ordre de 5,0.10⁻⁴ m/s au sein de l'horizon H3a.

La perméabilité du substratum crayeux dépend fortement de son degré de fracturation et de l'ouverture de ces fractures et fissures. De ce fait, on veillera, dans le cas d'une infiltration dans le massif crayeux, de ne pas colmater les fractures et fissures.

VII. ESSAIS EN LABORATOIRE

VII.1. IDENTIFICATIONS DES SOLS

Les résultats complets des essais de laboratoire sont fournis sous forme de fiches et procèsverbaux en annexe 8.

Les principaux résultats des essais d'identification sont repris dans le tableau ci-dessous :

	Profondeur		Résultats					
Sondage	de l'échantillon (m/TA)	Horizon testé	W (%)	Passant à 2 mm (%)	Passant à 8 μm (%)	VBS	IPI	Classe GTR
ST1	1.0-3.0	H2	13.5	94.5	80.1	0.95	2.2	A1th
ST2	0.7-2.1	H2	12.7	95.7	77.8	0.71	23.6	A1m
ST3	0.0-1.4	H1	11.7	96.1	82.9	0.99	34.8	A1 s à ts
ST4	0.2-1.3	H2	11.4	94.3	64.9	1.20	6.2	A1h
ST6	1.3-3.0	H3a	23.3	94.6	85.7	0.47	0.6	A1th
ST8	0.3-1.5	H2	11.8	96.0	82.4	0.58	-	A1
ST9	0.0-1.0	H1	12.1	95.9	82.3	0.82	25.8	A1s à ts
ST9	1.0-3.0	H2	13.5	94.9	67.1	0.68	5.0	A1
ST11	1.3-3.0	H3a	23.0	95.9	88.6	0.47	-	A1th
ST12	0.7-1.3	H2	15.9	96.3	85.6	0.35	-	A1
ST16	0.0-1.5	H2	9.3	93.9	79.7	0.83	46.9	A1s à ts
ST17	1.0-3.0	H2	20.5	91.8	83.9	2.42	1.1	A1th
ST18	1.0-3.0	H3a	10.5	91.3	68.6	0.47	6.7	A1h
ST19	1.0-3.0	H3a	21.2	91.4	81.2	0.57	0.6	A1th
PM1	1.0-1.5	H2	27.0	97.9	94.3	3.3	-	A2
SC1	Vers 1.0	H2	14.1	80.9	55.9	0.9	-	A1
SC2	Vers 1.0	H2	18.4	88.7	65.0	0.8	-	A1
SC3	Vers 1.1	H3a	22.6	87.2	49.8	0.4	-	A1

Les matériaux des horizons H1, H2 et H3 ont été analysés. Il s'agit majoritairement de sols de type A1 dont l'état hydrique est « humide » à « très humide ». Les sols fins de type A1 sont réputés pour être sensibles aux variations de teneur en eau.

VII.2. ESSAI DE COMPACTAGE

Un essai Proctor Normal a été réalisé, les principaux résultats sont repris dans le tableau cidessous :

Condogo	Profondeur de	Proctor Normal	
Sondage	l'échantillon (m/TA)	WOPN (%)	ρ _{ΟΡΝ} (kN/m³)
PM1	1.0-1.5 (horizon H2)	16.6	1.66

Ces résultats sont difficilement extrapolables à l'ensemble du site. En effet, l'horizon H2 correspond à la transition entre les limons et le substratum crayeux, sa nature est très variable.

VII.3. ESSAI DE TRAITEMENT

Un essai d'évaluation de l'aptitude d'un sol fin au traitement a été mené, les principaux résultats sont repris dans le tableau ci-dessous :

Sondage	Profondeur de	Aptitude du matériau au traitement pour les critères		
Jolluage	l'échantillon (m/TA)	De gonflement	De résistance	
PM1	1.0-1.5 (horizon H2)	ADAPTE	DOUTEUX	

La matière organique contenue dans ces sols (présence de radicelles) empêche les liaisons chimiques de se développer et rend la résistance non concluante.

Pour une meilleure appréciation de l'aptitude au traitement de ces sols, il convient de mener une étude spécifique.

De plus, la présence éventuelle de sulfate même si elle n'est pas significative, conjuguée aux matières organiques rend l'aptitude « douteuse ».

VII.4. AGRESSIVITE DES SOLS VIS-A-VIS DES BETONS

4 échantillons de sols ont été prélevés à des fins d'analyse en laboratoire concernant l'agressivité des sols vis-à-vis des bétons.

Les analyses sont réalisées pour répondre aux exigences de la norme EN 206-1, comprenant :

- ➤ Sur échantillon « Sol » :
 ✓ mesure du dosage en sulfates,
 ✓ mesure de l'acidité Bauman Gully.

Les résultats de ces analyses figureront dans les tableaux ci-après.

→ ANALYSE SUR SOL

Caractéristique	Seuils (Norme NF EN 206-1)				
chimique	XA1 XA2 XA3				
SO4 ²⁻ (mg/kg) ^{a)} total	≥ 2 000 et ≤ 3 000 b)	> 3 000 ^{b)} et ≤ 12 000	> 12 000 et ≤ 24 000		
Acidité (ml/kg)	> 200 Baumann Gully N'est pas rencontré dans la pratique				

- a) Les sols argileux dont la perméabilité est inférieure à 10⁻⁵ m/s peuvent être classés dans une classe inférieure.
- b) La limite doit être ramenée de 3 000 mg/kg à 2 000 mg/kg, en cas de risque d'accumulation d'ions sulfate dans le béton due à l'alternance de périodes sèches et de périodes humides, ou par remontée capillaire.

Caractéristique	Résultats obtenus					
chimique	ST16 (9/10.5m)	ST17 (6/7.5m)	ST18 (0/1m)	ST19 (1/3m)		
SO4 ²⁻ (mg/kg) ^{a)} total	390	330	480	330		
Degré d'acidité (ml/kg)	<2	<2	<2	<2		

→ Le résultat des mesures <u>d'agressivité des sols vis-à-vis du béton</u> (EN 206-1) figure dans le tableau synthétique ci-dessous :

Désignation	ST16 (9/10.5m)	ST17 (6/7.5m)	ST18 (0/1m)	ST19 (1/3m)
Classe	XA1	XA1	XA1	XA1
d'environnement	VHI	VHI	VHI	VHI

Légende :

• XA1 : faible agressivité chimique

• XA2 : agressivité chimique modérée

XA3 : forte agressivité chimique

VII.5. RESULTATS DES ESSAIS MECANIQUES EN LABORATOIRE

Les résultats des essais mécaniques réalisés en laboratoire sur des échantillons intacts prélevés dans les sondages réalisés sont repris dans le tableau suivant :

Sandaga	Profondeur de l'échantillon	Nature de l'échantillo	Caractéri	Caractéristiques mécaniques mesurées		
Sondage	(m/TA)	n prélevé	C' (kPa)	φ' (°)	γh (kN/m³)	
SC1	Vers 1.2	H2	9	35	2.01	
SC1	Vers 2.5	H3b	5	34	1.97	
SC2	Vers 1.8	H2	10	33	2.18	
SC2	Vers 3.8	H3b	7	30	2.05	

Sandaga	Profondeur de l'échantillon	Nature de		éristiques mécaniques mesurées		
Sondage	(m/TA)			φ' (°)	γh (kN/m³)	
SC3	Vers 1.2	НЗа	13	31	2.06	
SC3	Vers 3.4	H3b	3	34	1.94	

VIII. ANALYSE ET SYNTHESE GEOMECANIQUE

VIII.1. ANALYSE GEOMECANIQUE GENERALE

Le tableau qui suit résume, pour chaque faciès testé, les principaux résultats des essais pressiométriques.

Il convient de rappeler que des variations horizontales et/ou verticales inhérentes au passage d'un faciès à un autre sont toujours possibles mais difficiles à détecter en sondage. **De ce fait, les caractéristiques gardent un caractère représentatif, mais jamais absolu.**

Horizon	Base de l'horizon	Base de l'horizon	d'essais	Pression Limite nette pl* (MPa)				Module ssiométr E _M (MPa	ique	
	(m/TA)	(NGF)	Nbr	Min	Max	Moy _{ar}	σ	Min	Max	Moy _{ha}
H1 – Limon marron	0.1 à 1.4	55.5 à 51.3	0	-	-	-	-	-	-	-
H2 – Limon/Sable beige	0.3 à 5.0	53.6 à 49.8	1	0.4	45	-	-	4	.3	-
H3a – Craie altérée beige	2.5 à 4.5	51.4 à 48.3	14	1.27	2.97	1.97	0.63	12.3	154.7	25.4
H3b – Craie blanche grise	≥ 20.6	≤ 32.7	70	1.65	6.10	3.46	0.76	20.6	537.0	93.3

моу_{аr}: Moyenne arithmétique моу_{ha}: Moyenne harmonique σ: Ecart type

VIII.2. SYNTHESE MECANIQUE - BATIMENT TERTIAIRE

Sondages concernés: SP3 / SP4 / ST18 / ST19

Les caractéristiques qui pourront être retenues dans les calculs au stade de l'avant-projet sont présentées dans le tableau suivant :

Horizon	Base de l'horizon (m/TA)	Base de l'horizon (NGF)	Pression Limite nette pl* (MPa)	Module Pressiométrique E _M (MPa)	Coeff α
H1 – Limon marron	0.2 à 0.9	53.0 à 52.0	-	-	1/2
H2 – Limon/Sable beige	1.0	52.2 à 52.0	-	-	1/2
H3a – Craie altérée beige	2.5 à 3.5	50.4 à 49.5	1.3	16.0	2/3
H3b – Craie blanche grise	≥ 15.8	≤ 37.1	2.9	115.0	1/2

Pour la pression limite, il a été retenu la moyenne arithmétique diminuée d'un demi écart type arrondie, limitée à 1.5 fois la plus petite valeur.

Pour le module pressiométrique, il a été retenu la moyenne harmonique arrondie.

VIII.3. SYNTHESE MECANIQUE - BATIMENT ATELIER

Sondages concernés: SP1 / SP2 / SP3 / ST16 / ST17

Les caractéristiques qui pourront être retenues dans les calculs au stade de l'avant-projet sont présentées dans le tableau suivant :

Horizon	Base de l'horizon (m/TA)	Base de l'horizon (NGF)	Pression Limite nette pl* (MPa)	Module Pressiométrique E _M (MPa)	Coeff α
H1 – Limon marron	0.1 à 0.8	53.7 à 51.3	-	-	1/2
H2 – Limon/Sable beige	1.0 à 1.5	52.4 à 49.8	-	-	1/2
H3a – Craie altérée beige	2.5 à 4.5	50.9 à 48.3	1.6	27.0	2/3
H3b – Craie blanche grise	≥ 20.6	≤ 32.7	3.1	106.0	1/2

Pour la pression limite, il a été retenu la moyenne arithmétique diminuée d'un demi écart type arrondie, limitée à 1.5 fois la plus petite valeur.

Pour le module pressiométrique, il a été retenu la moyenne harmonique arrondie.

VIII.4. SYNTHESE MECANIQUE - STATION-SERVICE ET STATION DE LAVAGE

Sondages concernés: SP5 / SP6 / SC1 / SC2 / SC3 / ST14 / ST15

Les caractéristiques qui pourront être retenues dans les calculs au stade de l'avant-projet sont présentées dans le tableau suivant :

Horizon	Base de l'horizon (m/TA)	Base de l'horizon (NGF)	Pression Limite nette pl* (MPa)	Module Pressiométrique E _M (MPa)	Coeff α
H1 – Limon marron	0.3 à 0.7	53.5 à 52.5	-	-	1/2
H2 – Limon/Sable beige	0.3 à 1.5	53.6 à 51.6	-	-	1/2
H3a – Craie altérée beige	2.2 à 3.0	51.4 à 50.2	1.65	34.0	2/3
H3b – Craie blanche grise	≥ 20.1	≤ 33.8	2.90	61.0	1/2

Pour la pression limite, il a été retenu la moyenne arithmétique diminuée d'un demi écart type arrondie, limitée à 1.5 fois la plus petite valeur.

Pour le module pressiométrique, il a été retenu la moyenne harmonique arrondie.

RECOMMANDATIONS GEOTECHNIQUES

IX. SYNTHESE GENERALE

De l'analyse des éléments précédents, il ressort les points principaux ci-après :

- Le projet prévoit la construction d'un nouveau dépôt de bus composé de plusieurs ouvrages. On distinguera notamment :
 - Le bâtiment tertiaire ;
 - Le bâtiment atelier ;
 - La station-service et la station de lavage ;
 - Les parkings VL;
 - Les parkings Bus ;
 - Le bassin de rétention et d'infiltration.
- Les sollicitations sur les fondations communiquées sont de l'ordre de 3 à 30 t/ml sur appuis continus et de l'ordre de 20 à 110 tonnes sur appuis isolés. Il s'agit des DDC des bâtiments tertiaire et atelier. Aucune donnée n'a été transmise pour les stations (service et lavage).
- Les sondages ont mis en évidence sous une couche de terre végétale des limons marron (H1) sur une épaisseur variant de 0.1 à 1.4 m environ reposant sur des limons sableux beige à sables limoneux beige et plus ou moins crayeux (H2) de consistance moyenne. L'horizon H2 laisse place au substratum crayeux à partir de 0.3 à 5.0 m de profondeur. Le substratum crayeux est plus ou moins altéré en tête sur une épaisseur allant de 1.5 à 3.5 m.
- Les terrains superficiels sont à dominance A1h à th.
- Aucun niveau d'eau n'a été observé à l'issue de la réalisation des sondages.

X. ADAPTATIONS AU PROJET

Compte tenu des éléments précédents, et pour le projet décrit ci-avant, il pourra être envisagé les principes constructifs suivants :

⇒ Système de fondations :

- Fondations superficielles par appuis isolés / continus, ancrés dans l'horizon H3a, dans le cas de descentes de charges modérées ;
- Fondations semi-profondes par puits ancrés dans l'horizon H3b, dans le cas de descentes de charges importantes.

⇒ Faisabilité du niveau bas :

Après purge de la terre végétale et éventuels remblais et substitution par des matériaux graveleux, insensibles à l'eau et soigneusement compactés, le niveau bas du projet pourra être traité en dallage sur terre-plein, sous réserve de l'acceptation des tassements sous les surcharges effectives du projet. Dans le cas contraire, et afin de limiter les tassements, on s'orientera vers une solution d'amélioration de sol.

XI. JUSTIFICATION DES FONDATIONS SUPERFICIELLES

XI.1. DEFINITION DES FONDATIONS

Compte-tenu des résultats de nos investigations, il est possible d'envisager un système de **fondations superficielles de type semelles continues ou massifs isolés** ancrés de 0.3 m minimum dans la craie altérée (H3a) observée à partir de 0.3 à 1.5 m/TA et encastrées au minimum de 0.6 m par rapport au terrain fini extérieur (garde hors gel).

On notera que des investigations archéologiques sont en cours sur la parcelle étudiée. Ces travaux se font sous la forme d'une fouille relativement étendu (environ 1/3 du site) en lieu et place de futurs bâtis (bâtiment atelier, station-service et station de lavage). La fouille atteint environ 1.0 m de profondeur et sera laissée ouverte en fin d'étude archéologique jusqu'au commencement des travaux, le comblement étant à la charge de l'entreprise.

Le niveau TA correspond au niveau du terrain avant la réalisation de la fouille archéologique. On respectera donc un ancrage minimum des fondations de 0.5 m par rapport au niveau bas de la fouille archéologique.

Par ailleurs, en aucun cas on ne se fondera sur des sols remaniés.

XI.2. REGLEMENTS UTILISES

Les recommandations et justifications des prédimensionnements ont été faites conformément à la norme NF P 94-261, norme d'application française de l'Eurocode 7 pour les fondations superficielles.

XI.3. ETATS LIMITES DE RESISTANCE DU SOL

La contrainte de rupture q_{net} sous la base des fondations est donnée par la formule :

$$q_{net} = i_{\delta}.i_{\beta}.k_{p}.p_{le}*$$

avec:

• i_{δ} : le coefficient de réduction de portance lié à l'inclinaison du chargement ($i_{\delta} = 1$ si la charge est verticale),

• i_{β} : le coefficient de réduction de portance lié à la proximité d'un talus β , ($i_{\beta} = 1$ si la fondation est suffisamment éloignée d'un talus : d>8B).

• k_p : facteur de portance # 0.8

• p_{le}^* : pression limite nette équivalente

On suppose les charges verticales et centrées ; par application numérique, on obtient :

Bâtiment tertiaire : $Q_{net} = 1040 \text{ kPa}$ (H3a)

Bâtiment tertiaire : $Q_{net} = 2320 \text{ kPa}$ (H3b)

Bâtiment atelier : $Q_{net} = 1280 \text{ kPa}$ (H3a)

Station-service + Station de lavage : **q**net = 1320 kPa (H3a)

Les valeurs de résistance nette du terrain sous les fondations superficielles se déduisent selon la relation suivante :

$$R_{v;d} = A'.q_{net} / (\gamma_{R;d;v} \cdot \gamma_{R;v})$$

avec:

• A': la surface effective de la base de la fondation superficielle,

• $\gamma_{R;d;v}$: coefficient partiel de modèle associé à la méthode de calcul utilisée pour la détermination de q_{net} (ici, il s'agit de la méthode pressiométrique),

• $\gamma_{R;v}$: coefficient partiel permettant le calcul de la portance

Etat limite	Situations	$\gamma_{R;d;\nu}$ (spécifique à la détermination de q_{net} à partir de la pression limite pressiométrique)	Y R;v
ELU	durables et transitoires	1.2	1.4
220	accidentelles	1.2	1.2
FIC	quasi-permanentes	1.2	2.3
ELS	caractéristiques	1.2	2.3

<u>Contraintes admissibles à retenir en phase avant-projet – Bâtiment tertiaire :</u>

Etat limite		ELU	ELS	
Situations	Durables et transitoires	Accidentelles	Quasi-permanentes	Caractéristiques
Horizon H3a: Contraintes admissibles Rv;d/A' (kPa)	619	722	376	376
Horizon H3b: Contraintes admissibles Rv;d/A' (kPa)	1380	1611	840	840

Contraintes admissibles à retenir en phase avant-projet – Bâtiment atelier :

Etat limite	ELU		ELS	
Situations	Durables et transitoires	Accidentelles	Quasi-permanentes	Caractéristiques
Horizon H3a: Contraintes admissibles Rv;d/A' (kPa)	761	888	463	463

<u>Contraintes admissibles à retenir en phase avant-projet – Station-service et station de lavage :</u>

Etat limite	ELU		ELS	
Situations	Durables et transitoires	Accidentelles	Quasi-permanentes	Caractéristiques
Horizon H3a: Contraintes admissibles Rv;d/A' (kPa)	785	916	478	478

<u>Prédimensionnements des fondations – Bâtiment tertiaire :</u>

Exemple	Fondation linéaire de 0.6 m de large ancrée à 1.3 m de profondeur (H3a) par rapport au terrain actuel				
Etats limites / Situation	ELU / Durables ELU / ELS / Quasi- ELS / et transitoires Accidentelles permanentes Caractéristiques				
Charges admissibles verticales centrées Rv;d (kN/ml)	371	433	225	225	

Exemple	Fondation isolée carré de 1.1 m de côté ancrée à 1.3 m de profondeur (H3a) par rapport au terrain actuel			
Etats limites / Situation	ELU / Durables et transitoires	ELU / Accidentelles	ELS / Quasi- permanentes	ELS / Caractéristiques
Charges admissibles verticales centrées Rv;d (kN)	742	866	451	451

Exemple	Fondation semi-profonde par puits de 1.5 m² ancrée à 2.8 m de profondeur (H3b) par rapport au terrain actuel			
Etats limites / Situation	ELU / Durables et transitoires	ELU / Accidentelles	ELS / Quasi- permanentes	ELS / Caractéristiques
Charges admissibles verticales centrées Rv;d (kN)	2070	2416	1260	1260

<u>Prédimensionnements des fondations – Bâtiment atelier :</u>

Exemple	Fondation linéaire de 0.6 m de large ancrée à 1.2 m de profondeur (H3a) par rapport au terrain actuel			
Etats limites / Situation	ELU / Durables et transitoires	ELU / Accidentelles	ELS / Quasi- permanentes	ELS / Caractéristiques
Charges admissibles verticales centrées Rv;d (kN/ml)	456	532	277	277

Exemple	Fondation isolée carré de 1.3 m de côté ancrée à 1.2 m de profondeur (H3a) par rapport au terrain actuel			
Etats limites / Situation	ELU / Durables et transitoires	ELU / Accidentelles	ELS / Quasi- permanentes	ELS / Caractéristiques
Charges admissibles verticales centrées Rv;d (kN)	1293	1509	787	787

<u>Prédimensionnements des fondations – Station-service et station de lavage :</u>

Exemple	Fondation linéaire de 0.6 m de large ancrée à 1.2 m de profondeur (H3a) par rapport au terrain actuel			
Etats limites / Situation	ELU / Durables et transitoires	ELU / Accidentelles	ELS / Quasi- permanentes	ELS / Caractéristiques
Charges admissibles verticales centrées Rv;d (kN/ml)	471	549	286	286

Exemple	Fondation isolée carré de 1.0 m de côté ancrée à 1.2 m de profondeur (H3a) par rapport au terrain actuel			
Etats limites / Situation	ELU / Durables et transitoires	ELU / Accidentelles	ELS / Quasi- permanentes	ELS / Caractéristiques
Charges admissibles verticales centrées Rv;d (kN)	785	916	478	478

XI.4. TASSEMENTS

Il sera possible de calculer plus précisément les tassements une fois connues les descentes de charges précises du projet. Ces calculs pourront se faire dans le cadre d'une mission complémentaire de type G2 phase PRO (phase projet) et donnant lieu à une commande spécifique. Toutefois, étant donné les caractéristiques mécaniques des sols sous-jacents, les tassements devraient être négligeables.

A titre indicatif:

• Pour le bâtiment tertiaire :

- ✓ une semelle filante de 0.6 m de largeur, ancrée dans l'horizon H3a à 1.3 m de profondeur/TA, reprenant une charge de 225 kN/ml présentera un tassement inférieur au demi-centimètre.
- ✓ une semelle isolée carrée de 1.1 m de côté, ancrée dans l'horizon H3a à 1.3 m de profondeur/TA, reprenant une charge de 451 kN présentera un tassement de l'ordre du demi-centimètre.
- ✓ Un puits circulaire de 1.5 m² de section, ancré dans l'horizon H3b à 2.8 m de profondeur/TA, reprenant une charge de 1260 kN présentera un tassement infracentimétrique.

• Pour le bâtiment atelier :

- ✓ une semelle filante de 0.6 m de largeur, ancrée dans l'horizon H3a à 1.2 m de profondeur/TA, reprenant une charge de 277 kN/ml présentera un tassement de l'ordre du demi-centimètre.
- ✓ une semelle isolée carrée de 1.3 m de côté, ancrée dans l'horizon H3a à 1.2 m de profondeur/TA, reprenant une charge de 787 kN présentera un tassement de l'ordre du centimètre.

Pour la station-service et la station de lavage :

- ✓ une semelle filante de 0.6 m de largeur, ancrée dans l'horizon H3a à 1.2 m
 de profondeur/TA, reprenant une charge de 286 kN/ml présentera un
 tassement de l'ordre du demi-centimètre.
- ✓ une semelle isolée carrée de 1.0 m de côté, ancrée dans l'horizon H3a à
 1.2 m de profondeur/TA, reprenant une charge de 478 kN présentera un
 tassement infracentimétrique.

Le BET structure devra vérifier la compatibilité des tassements avec la nature de l'ouvrage.

XI.5. EFFORTS HORIZONTAUX - ÉTAT LIMITE ULTIME DE GLISSEMENT

Lorsque le chargement n'est pas normal à la base de la fondation, la fondation doit être vérifiée par rapport à une rupture par glissement sur sa base.

La vérification sera faite vis-à-vis des **états limites ultimes**. Si les efforts horizontaux sont intégralement repris par les forces de frottement s'exerçant à l'interface entre le sol et la fondation, la justification pourra être faite, selon le cas, conformément aux prescriptions de l'article 6.5.3. de l'Eurocode 7, « Calcul géotechnique, partie 1 ».

Si nécessaire, la réaction du sol sur les faces latérales de la fondation pourra être éventuellement prise en compte.

XI.6. REMARQUES

Il conviendra de respecter la règle des 3/2 indiquée dans le D.T.U. 13-1 "Fondations superficielles", à moins de dispositions particulières.

Ce paramètre est notamment à respecter entre les fondations projetées, qu'il s'agisse d'appuis continus et/ou d'appuis isolés.

Cette règle est également à prendre en compte entre les structures enterrées (cuve, citerne...) et les différentes fondations.

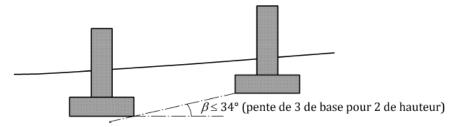


Figure 12 : Schéma de principe de la règle des 3H/2V (Source Eurocode 7, NF P 94-261, Fig 8.1, p. 32)

XII. REALISATION DES TERRASSEMENTS

Les travaux de terrassement envisagés consisteront au décapage des sols superficiels, en la réalisation des fouilles de fondation et des couches de forme des voiries et parkings.

Compte-tenu de la nature du sol, les terrassements pourront être réalisés avec des moyens traditionnels. Toutefois, la présence de blocs au sein du substratum crayeux pourra nécessiter l'utilisation de BRH.

L'arase obtenue sera constitué majoritairement de sols de type A1h à th, soit une classe de l'arase de ARO à AR1- (PST n°0 à n°1). Des difficultés de traficabilités sont à attendre ; en période pluvieuse la traficabilité du site sera nulle.

Au vue de la nature des sols superficiels (classe GTR A1), les godets à lame sont à privilégier.

Les terrains remaniés devront être totalement excavés sous les futurs éléments de fondations et de voiries.

Tous les points durs sous le niveau bas devront être purgés et éliminés dans leur totalité.

XIII. TALUTAGE EN PLEIN MASSE

Le projet prévoit la réalisation de fosses d'entretien au sein du bâtiment atelier et de la station de lavage. De plus, la station-service nécessitera l'enfouissement de cuves.

D'après les éléments collectés, une solution par talutage en pleine masse semble possible. Dans un premier temps, on pourra prendre en compte une pente de 3H/2V au sein des horizons H1 et H2 et 2H/1V au sein du substratum crayeux altéré.

Dans tous les cas, les talus et fonds de fouille seront protégés des eaux météoritiques et de ruissellement. De plus, aucune charge ne sera appliquée en crête de talus sur une frange de 2 m minimum.

Dans le cadre de la mission G2 PRO, une modélisation à l'aide du logiciel Geostab sera réalisée afin d'optimiser les pentes des talus à mettre en œuvre.

XIV. NIVEAU BAS

Le niveau bas pourra être traité en dallage sur terre-plein sous réserve de respecter le DTU 13.3 partie 1 (pour le bâtiment atelier) et le DTU 13.3 partie 2 (pour le bâtiment tertiaire) et les préconisations ci-dessous :

- purge et substitution de la totalité de la terre végétale, des éventuelles lentilles ou poches de matériaux décomprimés et/ou remaniés,
- compactage du fond de forme,

- mise en place d'un géotextile,
- mise en place d'une couche de forme avec des matériaux sains (selon le GTR) dont l'épaisseur dépendra de la nature du matériau utilisé et de la qualité de compactage,

Appellation des sols selon la norme NF P 11-300	Symbole de classification selon le Guide technique pour la réalisation des remblais et des couches de forme (GTR 92)						
Sols sableux et graveleux avec fines non argileuses et gros éléments	B11, B31						
Sols comportant des fines non argileuses et des gros éléments	C1B1, C1B3, C2B1, C2B3, C1B4, C2B4 après élimination de la fraction fine 0/d						
Sols insensibles à l'eau	D1, D2, D3 (sauf D32)						
Craies	R11						
Calcaires rocheux divers	R21, R22						
Roches silicieuses	R41, R42						
Roches magmatiques et métamorphiques	R61, R62						

 contrôler la qualité de la plateforme ainsi obtenue. Il conviendra d'obtenir, selon le DTU 13.3 un module de réaction de Westergaard Kw d'au minimum 50 MPa/m.

ABROTEC dans le cadre d'une mission spécifique peut réaliser ces essais de contrôle.

Pour le dimensionnement du dallage, à ce stade de l'étude, on retiendra les caractéristiques reprises dans le tableau suivant :

Bâtiment tertiaire :

Nature du sol	Profondeur/cote de la base de la couche (m/TA)	Epaisseur de la couche (m)	Module de déformation du sol Es (MPa)
H1 – Limon marron	0.4 / 52.6	purgé	-
H2 – Limon/Sable beige	1.0 / 52.0	0.5	8
H3a – Craie altérée beige	2.5 / 50.5	1.5	24
H3b – Craie blanche grise	≥ 15.8 / ≤ 37.1	-	Horizon considéré comme incompressible

Bâtiment atelier :

Nature du sol	Profondeur/cote de la base de la couche (m/TA)	Epaisseur de la couche (m)	Module de déformation du sol Es (MPa)
H1 – Limon marron	0.5 / 52.8	purgé	-
H2 – Limon/Sable beige	1.5 / 51.8	0.5	8
H3a – Craie altérée beige	4.5 / 48.8	3.0	40
H3b – Craie blanche grise	≥ 20.6 / ≤ 32.7	-	Horizon considéré comme incompressible

Tassement sous dallage:

A titre d'exemple, pour une surcharge d'exploitation de 1 t/m² (verticale et uniformément répartie) au niveau des dallages respectifs du bâtiment tertiaire et du bâtiment atelier, les tassements totaux attendus sous les niveaux bas sont de l'ordre du centimètre.

Dans le cas de surcharges d'exploitation plus importante, les tassements devront être calculés précisément afin de vérifier si les valeurs sont admissibles pour la destination de l'ouvrage. Le cas échéant, on pourra s'orienter vers une solution d'amélioration de sol par la mise en œuvre d'inclusions courtes ancrées dans la craie H3b.

Un calcul plus précis sera réalisé en mission G2 PRO en fonction des descentes de charges réelles. Ce calcul pourra amener à envisager des dispositions constructives particulières.

XV. VOIRIES - PARKINGS

Parkings VL: Sondages concernés: ST10 / ST11 / ST12 / ST13

Parkings BUS: Sondages concernés: ST1 / ST2 / ST3 / ST4 / ST5 / ST6 / ST7 / ST8 / ST9 / ST14 / ST15

En ce qui concerne les parkings BUS (Ouest des bâtiments), le sol d'assise sera constitué de limon beige pouvant être sableux.

Le sol support des parkings VL sera similaire pour la partie au Sud du bâti. Pour la partie des parkings VL à l'Est des bâtis, les limons se chargent en proportion crayeuse.

Pour les voiries Bus au niveau de la station-service et de la station de lavage, le sol support sera également de type limon plus ou moins crayeux.

Les sols d'assise seront principalement de classe GTR A1, dans un état hydrique « humide » à « très humide ». On devra s'attendre à une traficabilité de l'arase difficile, voire nulle en période pluvieuse.

XV.1. PORTANCE DU SOL SUPPORT

Compte tenu de la présence de sol en état hydrique « th », on devra tout d'abord penser à traiter ces zones. La solution de franchissement de celles-ci pourra être envisagé par une opération de terrassement (purge, substitution) et/ou de drainage (fossés drainant...) pour l'obtention d'une arase de classe AR1 minimum.

D'après la classe du sol composant le support (A1 s à th), on peut en déduire la portance estimée à court terme, en conditions moyennes (printemps et automne peu pluvieux, été médiocre) entre 15 et 30 MPa, soit une PSTO à 1.Les travaux devront être stoppés en période pluvieuse (même en cas de pluies faibles) et ce jusqu'à retrouver un état hydrique acceptable du sol support.

Dans le cas d'une portance de l'arase inférieure à 30 MPa, un traitement des sols en place, à la chaux (2 à 4 %), sur 35 cm (d'épaisseur efficace), en conditions moyennes, permettra d'obtenir une portance estimée à court terme supérieure à 30 MPa.

Notons que l'essai d'aptitude mené sur le limon conclut que le traitement est douteux. Une étude spécifique pourra être menée si la solution de traitement reste envisagée.

L'amélioration de la portance de l'arase (si nécessaire) pourra également être réalisé par substitution. Cette méthode ne peut être décidée ou prescrite qu'au moment des travaux.

XV.2. COUCHE DE FORME

La mise en œuvre d'une couche de forme d'une épaisseur de 35 cm, constituée de limons peu plastiques (sols A1) traités en place (au-dessus de l'arase qui elle-même pourra avoir déjà été traitée) par un mélange à la chaux (0 à 3%) et avec un liant hydraulique (5 à 8%) permettra l'obtention d'une plate-forme de classe PF2.

Dans le cas où le traitement du limon n'est pas envisageable, on pourra mettre en œuvre une couche de forme pour l'obtention d'une plate-forme de classe PF2. Cette couche de forme sera mise en place sur un géotextile et pourra être constitué de :

- Soit 40 cm de GNT (graves calcaires concassées, bétons ou produits de démolition recyclés type GR1);
- Soit 75 cm de MIOM non traités.

Un enduit de cure gravillonné, éventuellement clouté, sera à prévoir comme protection superficielle.

La mise en place d'un géotextile jouera le rôle d'anticontaminant entre la couche de forme et la couche de fondation ou de base de la chaussée, empêchant la circulation des particules fines.

RECEPTION

Pour la réception de l'arase, des essais de plaque seront menés pour contrôler sa portance.

Pour la réception de la plate-forme PF2, les points suivants devront être vérifiés dans le cas d'une couche de forme en limons traités en place :

- EV2 ≥ 50 MPa,
- Déflexion mesurée à la poutre de Benkelman sous essieu de 13 tonnes < 0.80 mm.

Pour la réception de la plate-forme PF2, les points suivants devront être vérifiés dans le cas d'une couche de forme non traitée :

- EV2 ≥ 50 MPa,
- Déflexion mesurée à la poutre de Benkelman sous essieu de 13 tonnes < 2.0 mm.

XV.3. PREDIMENSIONNEMENT DE LA STRUCTURE DE CHAUSSEE - PARKINGS VL

En l'absence de données de trafic, nous prendrons comme hypothèse une classe de trafic cumulé TC2 et une plate-forme de classe PF2.

Nous pouvons ainsi pré-dimensionner la structure de la chaussée :

- Dans le cas de l'utilisation d'un Enrobé à Module Elevé de classe 2 (EME2)
 - ✓ Couche de surface CS de 5 cm de BBSG
 - ✓ Couche de base de 10 cm.
- Dans le cas de l'utilisation d'une Grave-bitume de classe (GB3)
 - ✓ Couche de surface CS de 6 cm de BBSG
 - ✓ Couche de base de 12 cm.

XV.4. PREDIMENSIONNEMENT DE LA STRUCTURE DE CHAUSSEE - VOIRIES ET PARKINGS BUS

Nous prendrons comme hypothèse une classe de trafic cumulé TC3 et une plate-forme de classe PF2, pour une durée de vie de 20 ans. Nous pouvons ainsi pré-dimensionner la structure de la chaussée :

- Dans le cas de l'utilisation d'un Enrobé à Module Elevé de classe 2 (EME2)
 - ✓ Couche de surface CS de 4 cm de BBM
 - ✓ Combinaison de couches de base de 7 et 6 cm.
- Dans le cas de l'utilisation d'une Grave-bitume de classe 3 (GB3)

- ✓ Couche de surface CS de 6 cm de BBME
- ✓ Combinaison de couches de base de 8 et 8 cm.

XV.5. GENERALITES

La gélivité de la structure devra être vérifiée.

D'autres structures sont envisageables qui pourront être proposées en variante par les entreprises.

On veillera à limiter les infiltrations d'eau au niveau de ces sols supports de chaussée (fossés, drainage...).

Les couches de chaussée seront mises en œuvre, compactées et contrôlées suivant les spécifications en vigueur.

XVI. PRECAUTIONS PARTICULIERES DE CONCEPTION ET D'EXECUTION

XVI.1. FONDATIONS

Si des fondations doivent être fondées à des niveaux différents, on respectera la règle des 3/2, à moins de dispositions particulières. Ce paramètre est notamment à respecter entre les fondations projetées qu'elles soient en appui continu et/ou en appui isolé.

La largeur minimale des fondations sera de 0.6 m pour des semelles filantes et de 0.8 m pour des puits avec un diamètre minimal de 1.2 m et une section minimale de 1.1 m² pour des fondations circulaires.

Afin d'assurer la protection contre le gel, la hauteur minimale d'encastrement sera d'au moins 0.6 m sous le terrain naturel extérieur (cf annexe 0.4.4 de la norme NF P 94-261).

Toute zone décomprimée fera l'objet d'un traitement spécifique, si elle doit recevoir un élément de l'ouvrage à porter (purge, compactage).

On assurera un ancrage minimal de 0.5 cm de profondeur par rapport au niveau bas de la fouille archéologique menée actuellement sur le site.

Les fondations des auvents et des structures similaires seront également vérifiées à l'arrachement.

XVI.2. CONSTRUCTION

Dans tous les cas où deux parties d'un même bâtiment seraient fondés de façon différente, ou encore présenteraient un nombre de niveaux sensiblement différent, il conviendra de s'assurer que la structure peut s'adapter sans danger aux tassements différentiels qui risquent de se

produire. Dans le cas contraire, les projeteurs devront prévoir un joint de construction intéressant toute la hauteur de l'ouvrage, y compris les fondations elles-mêmes.

XVI.3. PRECAUTIONS DE MISE EN ŒUVRE

Les poches molles ou décomprimées seront purgées et rattrapées par un gros béton.

Afin d'éviter une décompression du fond des fouilles et des rigoles de semelles, celui-ci devra être protégé immédiatement par un béton de propreté ou un matériau équivalent.

Les fondations devront être coulées immédiatement après terrassements et en pleine fouille.

XVI.4. ELEMENTS DE STRUCTURE

Les éventuelles parties du projet de charges différentes devront être séparées par un joint de rupture.

XVII. SUITES A DONNER

La présente étude s'inscrit dans le cadre d'une étude géotechnique de conception phase avantprojet (mission G2 AVP). Conformément à la norme sur les missions géotechnique, il conviendra de poursuivre les études géotechniques par une mission de type G2 PRO permettant de vérifier les éléments suivants :

- le dimensionnement des fondations (portance, glissement, arrachement...) et la valeur ainsi que l'admissibilité des tassements ;
- la méthodologie de réalisation des plateformes ;
- la stabilité des pentes de talus provisoires pour les ouvrages enterrés;
- l'aptitude au traitement des sols.

Toute anomalie (indice de cavité, présence des remblais) devra être signalée à Abrotec pour éventuelles adaptations ou missions de diagnostic supplémentaires.

De manière générale, des contrôles sont préconisés sur tous les chantiers en phase travaux (fond de fouille, remblayage) ; ces contrôles s'intègreront dans le cadre du suivi de chantier (mission G3 ou G4).

XVIII. ALEAS GEOTECHNIQUES ET CONDITIONS CONTRACTUELLES

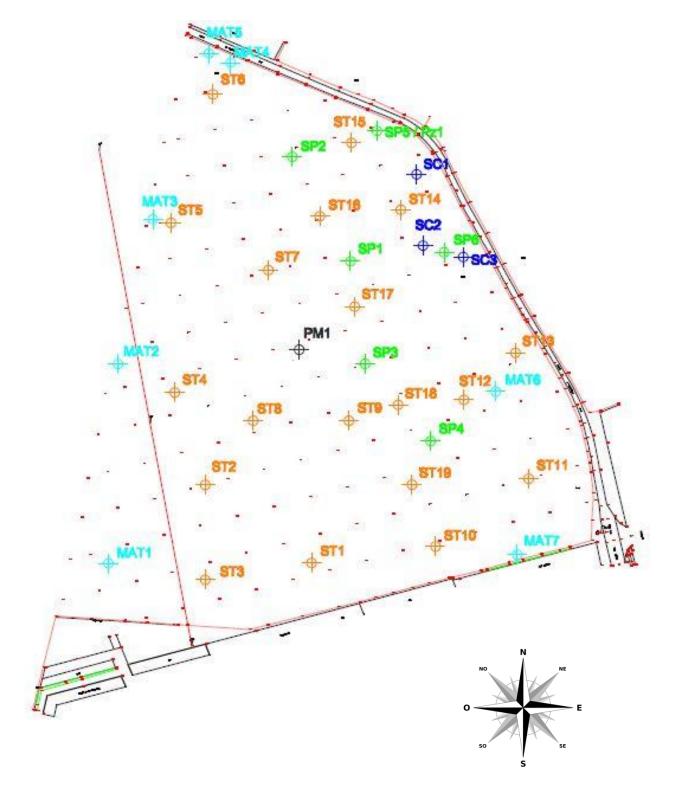
1. Le présent rapport et ses annexes constituent un tout indissociable. La mauvaise utilisation qui pourrait être faite suite à une communication ou reproduction partielle ne saurait engager ABROTEC.

- 2. Des modifications dans l'implantation, la conception ou l'importance de la construction ainsi que dans les hypothèses prises en compte et en particulier dans les indications de la partie "Présentation" du présent rapport peuvent conduire à des remises en cause des prescriptions. Une nouvelle mission devra alors être confiée à ABROTEC afin de réadapter ces conclusions ou de valider par écrit le nouveau projet.
- 3. De même, des éléments nouveaux mis en évidence lors de l'exécution des fondations et n'ayant pu être détectés au cours des reconnaissances de sol (exemple : hétérogénéité localisée, venues d'eau, etc.) peuvent rendre caduques certaines des recommandations figurant dans le rapport.
- 4. Les reconnaissances de sol procèdent par sondages ponctuels, les résultats ne sont pas rigoureusement extrapolables à l'ensemble du site. Il persiste des aléas (exemple : hétérogénéité locale) qui peuvent entraîner des adaptations tant de la conception que de l'exécution qui ne sauraient être à la charge du géotechnicien.
- 5. Ce rapport vient clôturer la mission G2 AVP qui nous a été confiée pour cette affaire.

Cette étude géotechnique d'avant-projet ne peut en aucun cas être utilisée comme document de conception au stade exécution. Nous attirons l'attention du Maître d'Ouvrage sur la nécessité de réaliser les missions successives G2 PRO, G2 DCE/ACT, G3 (à la charge de l'entrepreneur) et G4 dans l'enchaînement prévu par la norme NF P 94-500.

ABROTEC reste entièrement à la disposition du Maître d'Ouvrage pour la réalisation de ces missions en phase de conception puis d'exécution.

ANNEXES



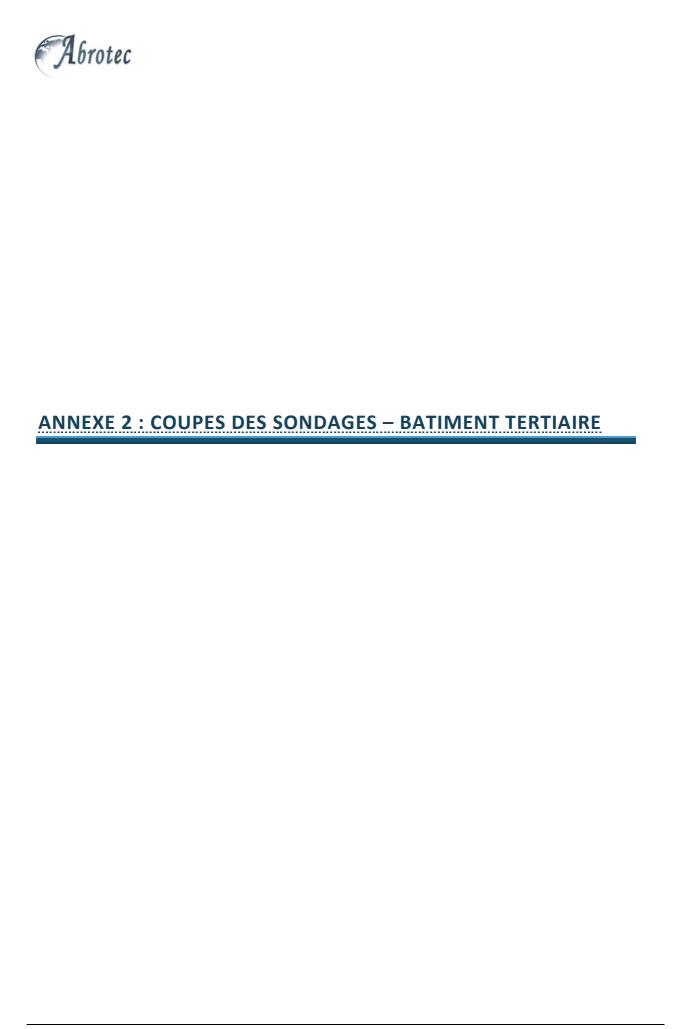
PLAN D'IMPLANTATION DES SONDAGES

N° de dossier : NO15 0575-2 Ville : RIVERY (80)

Client : Amiens Métropole Affaire : Dépôt de bus – Phase 2

Emplacement des sondages

SP : Sondage pressiométrique / ST : Sondage à la tarière / SC : Sondage carotté / PM : Puits à la pelle mécanique / Pz : pose d'un piézomètre / MAT : Essai de perméabilité à la fosse (MATSUO)



PLAN D'IMPLANTATION DES SONDAGES

Ville: RIVERY (80) **N° de dossier :** NO15 0575-2 Client: Amiens Métropole Affaire: Dépôt de bus - Phase 2 MAT5 матз 🍎 ⊕ ST15 ST7 MAT2 SP1 PM1 SP3 ST2 \oplus ST3 ST1

Espa (erts

Z.A. de la Belleforière - Rue Fransisco Ferrer 59286 Roost-Warendin

Tel: 03.27.90.13.77 - Fax: 03.27.90.41.66

 Dossier
 Chantier
 Client

 NO15 0575-2
 RIVERY (80)
 AMIENS METROPOLE

 Forage
 Date de début
 X
 Y

 SP3
 12/10/2016 08:20:50
 E2.335493°
 N49.916726°

Prof. (m)	Prof. (m)	Figuré	Description	Niveaux d'eau (m)	Outils de forage	Fluides de forage	de	E_M (MPa) 0 500	PL* (MPa)	PF* (MPa)	EM/PL*	VA (m/h)	PO (bar) 0 50 100 0	CR (bar)	PI (bar)
0	- 0.85 -	ШШ	Limon marron			iorage	lorage	126	1.36	0.73		S O O O O O O O O O O	0.01	(8,91)	
2		_ <u></u>	Craie légèrement altérée					31	1.57	1	10 19.7				
	- 2.5 -	ΙŢ		-				75.9	2.48	2.48	30.6				
4	-	$:I_{+}^{\perp}:$						90.7	2.75	2.26	24.6	7			
6		III.			_			63.8	2.75	2.28	33 23.2	Shanky franke my Car			M. M
					Tricône ø64 mm	_		34.2	2.23	1.26	15.3	MA MA			MA .
8	-	I_:			cône ø	Eau		198.3	3.37	1.77	62.9	MAADA			
10	_	II	Craie à passées de silex		Έ			412	3.48	1.79	58.8 118.4	W. Control of the Con			
								255.4	3.3	1.48	77.4	M.			
12	-	$: I_+^{\perp}:$						267.7	3.37	1.77	58.6	Verbyou			
14		I						254.1	3.39	2.19	79.3 74.9	WILL MANNEY			
		- 						183.4	3.15	1.86	58.2				
16	= 15.78 =			-						-		15.78	15.78	15.78	15.78
18										-					
20															

Z.A. de la Belleforière - Rue Fransisco Ferrer 59286 Roost-Warendin

Tel: 03.27.90.13.77 - Fax: 03.27.90.41.66

Dossier NO15 05	75-2	Chantier RIVERY (80)	Client AMIENS MET	ΓROPOLE
Forage SP4	Date de	début 2016 13:22:00	X E2.335978°	Y N49.9164199°

Prof. (m)	Prof. (m)	Figuré	Description	Niveaux d'eau (m)	Outils de forage	de	de		PL* (MPa)	PF* (MPa)	EM/PL*	VA (m/h)	P0 (bar)	CR (bar)	PI (bar)
						forage	forage	0 500	0 10	0 0 10		0 500 1000	0 50 100 0	100 200	0 10 2
0	- 0.85 -	ЩЩ	Limon marron	-				12.3	1.27	0.68	9.7			4	
2		·┺╤╸ -┰┸╴	Craie légèrement altérée					19	1.58	0.76	12.1				
	- 2.5 -	$\Box \Box \Box$						50.8	4.1	1.76	12.4				
4		$I I \perp I$						34.5	3.19	2.74	10.8				
		$:$ $I_{+}^{\perp}:$						147.3	3.46	2.28	43.7		5		
6	-	ΙΙ			E E			222.5	3.63	2.27	52.7 61.4				
8					Tricône ø64 mm	Eau		175.2	3.27	1.81	53.6				
			Craie à passées de silex		Tricôn			225.1	3.48	2.74	64.7				
10 -	-							188.3	3.78	2.24	49.8		, -	1	Man Junh
		III						147.9	2.78	2.28	44				Jun
12		II_{+}^{\perp}						282.2	3.86	2.75	98.2				
14		ΙΤ.						216.8	3.25	2.25	73.1 66.6				
1-7								173.4	3.14	1.8	55.3				*
16	- 15.65 -			-									15.64	15.64	15.64
18															
20 -															

59286 Roost-Warendin Tel: 03.27.90.13.77 - Fax:

03.27.90.41.66

Dossier Chantier Client

NO15 0575-2 RIVERY (80) AMIENS METROPOLE

Forage Date de début ST18 06/10/2016

07:00:00

Y

E2.3357362° N49.9165906°

Prof. (m)	Prof. (m)	Figuré	Description	Niveaux d'eau (m)	Outils de forage	Tubages de
0		~~~~~	Terre végétale			forage
	- 0.25 -		Limon sableux marron clair			
1 .	- 1 -		Elifoti Sabicax marron cian			
		 				
2 -		-				
		⊦┸┬┸┬┸┌┸╎				
3 -		[] + [+ [+ [+ [+ [+ [+ [+ [+ [+				
4 -						
5 -					٤	
					Tarière ø114 mm	
6 -						
			Craie blanche		arière	
7 -					ľ	
8 -		。 ┻┰┻┰┻┰┻╽				
		$-\mathbf{I}_{ op}\mathbf{I}_{ op}\mathbf{I}_{ op}\mathbf{I}_{ op}\mathbf{I}_{ op}$				
9 -						
9 .						
10 -						
		t±±±±±±				
11 .		-				
12 -	- 12 -					
13 •						
14 -						
15 •						
16 -						
16 -						
17						
17 .						

59286 Roost-Warendin Tel : 03.27.90.13.77 - Fax :

03.27.90.41.66

Dossier Chantier Client

NO15 0575-2 RIVERY (80) AMIENS METROPOLE

Forage Date de début ST19 07/10/2016

X Y E2.3358442° N49.9162138°

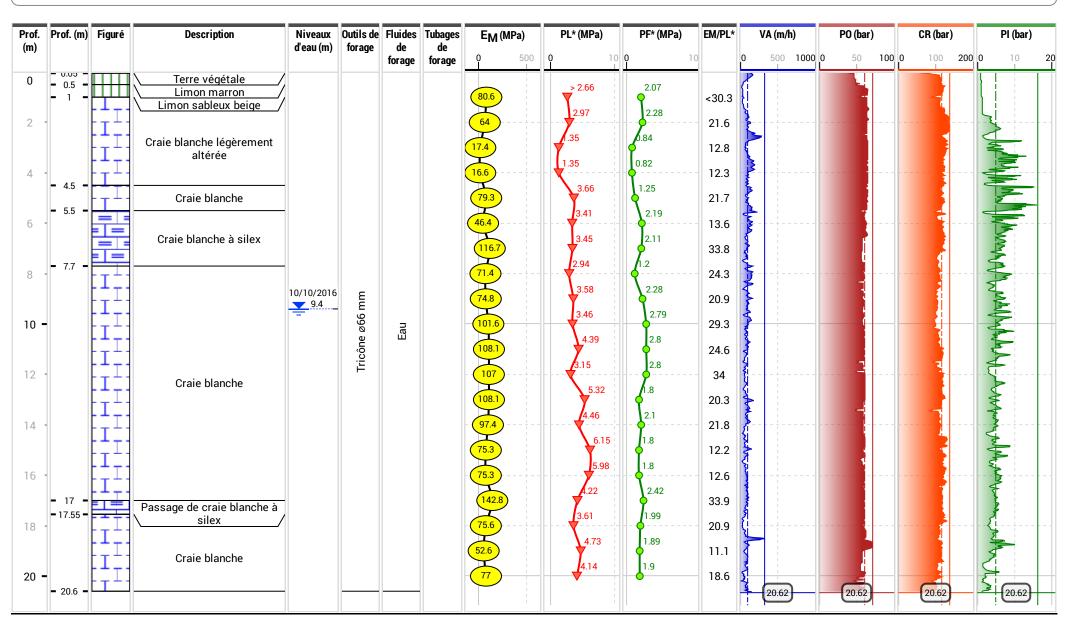
07:10/2016

Prof. Prof. (m) Outils de Tubages Figuré Description Niveaux ďeau (m) forage de (m) forage Terre végétale 0 **-** 0.25 Limon sableux marron clair 2 3 5 Tarière ø114 mm 6 Craie blanche 8 9 10 11 13 14

15

16 •

17


ANNEXE 2:	COUPES DE	S SONDAGES -	- BATIMENT A	ATELIER

Z.A. de la Belleforière - Rue Fransisco Ferrer 59286 Roost-Warendin

Tel: 03.27.90.13.77 - Fax: 03.27.90.41.66

NO15 05		Chantier RIVERY (80)	Client AMIENS MET	ROPOLE
Forage	Date de d	16 09:54:54	x	ү
SP1	10/10/20		E2.3353784°	N49.9172691°

Z.A. de la Belleforière - Rue Fransisco Ferrer 59286 Roost-Warendin

Tel: 03.27.90.13.77 - Fax: 03.27.90.41.66

Dossier NO15 05	75-2	Chantier RIVERY (80)	Client AMIENS MET	ROPOLE
Forage	Date de d	lébut	X	Y
SP2	13/10/20	016 08:56:00	E2.3343431°	N49.9177626°

Prof. (m)	Prof. (m)	Figuré	Description	Niveaux d'eau (m)	Outils de forage	de	de	E _M (MPa)	PL* (MPa)	PF* (MPa)	EM/PL*	VA (m/h)	PO (bar)	CR (bar)	PI (bar)
0	- 0.7 -	ШШ	Limon marron			forage	forage	0 500	2.76	2.76	-	0 500 1000	0 50 100 0	100 200	0 10 20
2			Craie légèrement altérée					31.2	1.67	0.93	56 18.7		Y. V.		
4	- 3.5 -	<u> </u>		_				24.8	4.28	1.13	11.7 19.7				2
4								164.8	3.44 > 2.77	1.78	48				Limme
6		II.			mm :			217.3	3.35	1.75	<49.2 64.8				
8					Tricône ø64 mm	Eau		- 108.3	2.96	2.28	36.6				Marke
10 -	-		Craie à passées de silex		Trio			250.5	3.86	2.45	61 64.9			7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
12		ΙŢ						202.6	2.78	1.83	72.9 106.7				
12								537.4	2.95	1.3	182.1				
14		$\mathbf{I}_{\perp}^{\perp}$						242.6	2.98	1.52	82.4 81.4				#U
16	- 15.72 -			_									15.71	15.71	15.71
18															
20 •															

Z.A. de la Belleforière - Rue Fransisco Ferrer 59286 Roost-Warendin

Tel: 03.27.90.13.77 - Fax: 03.27.90.41.66

 Dossier
 Chantier
 Client

 NO15 0575-2
 RIVERY (80)
 AMIENS METROPOLE

 Forage
 Date de début
 X
 Y

 SP3
 12/10/2016 08:20:50
 E2.335493°
 N49.916726°

Prof. (m)	Prof. (m)	Figuré	Description	Niveaux d'eau (m)	Outils de forage	Fluides de forage	de	E_M (MPa) 0 500	PL* (MPa)	PF* (MPa)	EM/PL*	VA (m/h)	PO (bar) 0 50 100 0	CR (bar)	PI (bar)
0	- 0.85 -	ШШ	Limon marron			iorage	lorage	126	1.36	0.73		S O O O O O O O O O O	0.01	(8,91)	
2		_ <u></u>	Craie légèrement altérée					31	1.57	1	10 19.7				
	- 2.5 -	ΙŢ		-				75.9	2.48	2.48	30.6				
4	-	$:I_{+}^{\perp}:$						90.7	2.75	2.26	24.6	7			
6		III.			_			63.8	2.75	2.28	33 23.2	Shanky franke my Car			M. M
					Tricône ø64 mm	_		34.2	2.23	1.26	15.3	MA MA			MA .
8	-	I_:			cône ø	Eau		198.3	3.37	1.77	62.9	MAADA			
10	_	II	Craie à passées de silex		Έ			412	3.48	1.79	58.8 118.4	W. Control of the Con			
								255.4	3.3	1.48	77.4	M.			
12	-	$: I_+^{\perp}:$						267.7	3.37	1.77	58.6	Verbyou			
14		I						254.1	3.39	2.19	79.3 74.9	WILL MANNEY			
		- 						183.4	3.15	1.86	58.2				
16	= 15.78 =			-						-		15.78	15.78	15.78	15.78
18										-					
20															

59286 Roost-Warendin

Tel: 03.27.90.13.77 - Fax: 03.27.90.41.66

Dossier Chantier Client
NO15 0575-2 RIVERY (80) AMIENS METROPOLE

Forage Date de début ST16 05/10/2016 07:00:00

Υ

E2.335150° N49.917482°

Prof. (m)	Prof. (m)	Figuré	Description	Niveaux d'eau (m)	Outils de forage	Tubages de
		~~~~	Terre végétale			forage
0	- 0.2 -		Terre vegetale			
1	- 1.5 <b>-</b>		Limon sableux beige			
2 -	_					
3						
4 -	_					
5					E L	
6 •	_				Tarière ø114 mm	
7			Craie blanche		Tari	
8 -	-					
9						
10 -						
11						
12 •	12 -	I + I + I + I :				
13						
14 •	-					
15						
16 •						
17						



59286 Roost-Warendin

Tel: 03.27.90.13.77 - Fax: 03.27.90.41.66

Dossier Chantier Client
NO15 0575-2 RIVERY (80) AMIENS METROPOLE

Forage Date de début ST17 06/10/2016 07:00:00 X Y

E2.335412° N49.917054°

Prof. (m)	Prof. (m)	Figuré	Description	Niveaux d'eau (m)	Outils de forage	Tubages de
	0.1	***		u cuu (iii)	ioruge	forage
0	- 0.1 -		Terre végétale marron			
1	<b>-</b> 1.5 <b>-</b>		Limon sableux beige			
2 -			Craie altérée sableuse beige			
3	- 3 -	-				
4 -	_		Craie beige			
5	<b>-</b> 4.5 <b>-</b>		Craie blanche		۶	
6 -	6 -	$I_{\perp}^{\perp}I_{\perp}^{\perp}I_{\perp}^{\perp}I_{\perp}$	ordic stantone		Tarière ø114 mm	
7		- <del> </del>			Tarière	
8 -	_		Craie blanche humide			
9			orale blanche harmae			
10 -	- - 10.5 -					
11	- 10.5 -		Craie blanche			
12 -	- 12 -	- 4 - 4 - 4 - 4				
13						
14 -	-					
15						
16 <b>-</b>						
17						



## PROCES VERBAL D'ESSAIS

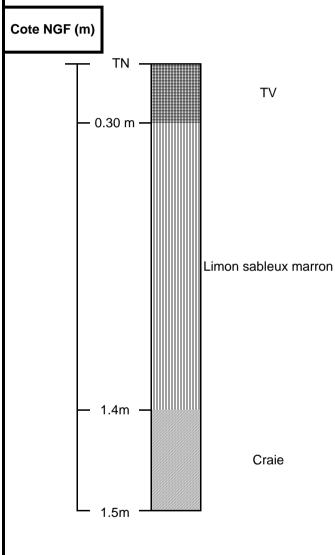
SONDAGE A LA PELLE MECANIQUE

NO15 0575-2

PM₁

# RIVERY(80)

Affaire : Construction d'un dépôt de bus


Date de réalisation : 05 et 06/10/2016

Coordonnées:

N 49,916848° E 2,335007°

## **Description**

## **Photographie**





Observations: Paroi stable

Aucune venue d'eau

ZA de la Belleforière - rue Francisco Ferrer - 59286 ROOST-WARENDIN Tél : 03 27 90 13 77 - Fax : 03 27 90 41 66 - Site Web : www.abrotec.com



		SONDAGES		
STATION				



Z.A. de la Belleforière - Rue Fransisco Ferrer 59286 Roost-Warendin

Tel: 03.27.90.13.77 - Fax: 03.27.90.41.66

 Dossier
 Chantier
 Client

 NO15 0575-2
 RIVERY (80)
 AMIENS METROPOLE

 Forage
 Date de début
 X
 Y

 SP5
 13/10/2016 13:52:00
 E2.335563°
 N49.917889°

(m)	FIUI. (III)	Figuré	Description	d'eau (m)	Outils de	Fluides de	Tubages de	E _M (MPa)	PL* (MPa)	PF* (MPa)	EM/PL*	VA (m/h)	PO (bar)	CR (bar)	PI (bar)
(111)				u eau (III)	ioraye	forage	forage	0 500	o    o	10 0 1	0	0 500 1000	0 50 100 0	100 200	10 20
0	- 0.4 -	-	Limon marron Limon sableux beige						2.79	1.74					
	- 1 -	11		-				44.2		:    <b>?</b>	15.8				
2		- T -	Craie altérée					33.4	1.66	0.75	20.1	ļ			
	- 2.5 -							65.7	3.91	1.63	16.8		3		Jul.
4								112	3.47	1.91	32.3				
								79.2	3.44	2.14	23				
		-⊥						132	3.54	2.72					<b>₹</b>
6								- 100.3	3.86	2.76	28.4				
								174.8	3.6	2.79	45.3				A CONTRACTOR OF THE CONTRACTOR
8		- T [_] -			_			208.7		·- <del> -</del>     <b>-</b>	- 58	<del> </del>	·		
		TT!			Tricône ø64 mm			116.1	3.43	2.82	33.8				<b>*</b>
10 -					ø64	Eau		94.6	> 3.38	2.82	<28				
					cône										
12		- ⊥	Craie à passées de silex		Έ										<u> </u>
12		I + 1													{
															(l
14															
		- _T I													
16		- <u>+</u> I:													
18								<u> </u>				ļi			
															}
20 -	- 20.1 -			1									20.09	20.09	20.09



Z.A. de la Belleforière - Rue Fransisco Ferrer 59286 Roost-Warendin

Tel: 03.27.90.13.77 - Fax: 03.27.90.41.66

Dossier NO15 05	75-2	Chantier RIVERY (80)	Client AMIENS METR	ROPOLE
Forage	Date de	début	X	Y
SP6	11/10/2	016 08:41:50	E2.3360654°	N49.917316°

Prof. (m)	Prof. (m)	Figuré	Description	Niveaux d'eau (m)	Outils de forage	de	de	<b>E_M (MPa)</b>	PL* (MPa)	<b>PF* (MPa)</b>	EM/PL*	<b>VA (m/h)</b> 0 500 1000	<b>PO (bar)</b> 0 50 100	<b>CR (bar)</b>	<b>PI (bar)</b> 0 10 20
0	- 0.3 -	╫╂╂╂╣╮	Limon marron			forage	forage	1		<u>                                   </u>		2 4.00	0 30 100	0.01	0 10 20
			Limon sableux beige					4.3	0.45	0.24	9.4	<u> </u>			
2 -	<b>-</b> 1.5 <b>-</b> 2.2 <b>-</b>		Craie légèrement altérée beige	- ,				28.6	2.51	1.69	11.4	<b>₹</b>	<u>a</u>	1 1 1 1	
		II						42.7	3.44	1.32	12.5	ANN N	3		Mulhalla
4 .		I			Tricône ø64 mm			31.4	2.99	1.43	11.3 10.5		<u>i</u>		
6 -					ône ø6	Eau		20.6	1.65	0.71	12.5				
		- <del>-</del>	Craie à passées de silex		Trio			38	1.67	0.67	22.7	<b>F</b>			
8		$[I_{\perp}]$						91.5	3.66	2.74	25			1	
								105.9	2.77	2.76	28	A James			
10 -	<b>-</b> 11.01 <b>-</b>	$II_{+}^{\perp}I$						(110.2)			<39.8	11.01	11.01	11.01	11.01
12 -	-11.01-											11:01	(1.01)	(1.01)	
14													 		
16															
18														<del> </del>	<u>-                                </u>
20 -															



59286 Roost-Warendin

Tel: 03.27.90.13.77 - Fax:

03.27.90.41.66

Dossier Chantier Client NO15 0575- RIVERY (80) AMIENS METROPOLE Date de début Forage 11/10/2016 Machine

07:00:00 SC1

Χ

Observation 1652307.2 9191056.7

Prof. (m)	Prof. (m)	Figuré	Description	Numéro d'échantil	Niveaux d'eau (m)	Outils de forage	Fluides de forage	Tubages de forage
0	0.41		Limon brun à cailloutis crayeux					
0.5	- 0.41 -		Limon sableux beige à nombreux cailloutis crayeux					
1.5	<b>-</b> 1.45 <b>-</b>		Craie légèrement altérée blanchâtre	_ E.l. n °1				
2 -	- 2 -		Craie blanche	E.I.n °2		ø90 mm		
3 -	- 3 -	- <del>-</del>		_		imple	Eau	
3.5						Carottier simple ø90 mm		
4 -								
4.5			Craie grise à blanchâtre					
5 -								
5.5								
6 <b>-</b>	- 6 -			-				
6.5								
7 -								
7.5								
8 -								
8.5								
9 -								
9.5								
10 -								
10.5								
11 -								



## Construction d'un dépôt de bus - RIVERY (80) - AMIENS METROPOLE









Observation

Z.A. de la Belleforière - Rue Fransisco

Ferrer

59286 Roost-Warendin

Tel: 03.27.90.13.77 - Fax:

03.27.90.41.66

Dossier Chantier NO15 0575- RIVERY (80) Date de début

Client

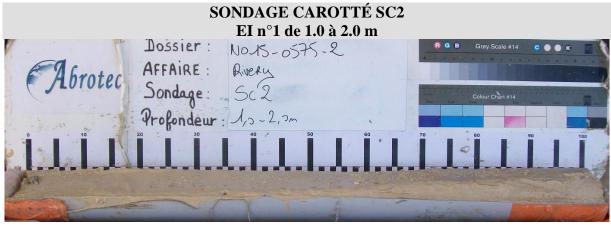
**AMIENS** 

Machine

METROPOLE

Forage 07/10/2016 07:00:00 SC2

Χ


E2.3359098° N49.9173465°

Prof. (m)	Prof. (m)	Figuré	Description	Numéro d'échantil	Niveaux d'eau (m)	Outils de forage	Fluides de forage	Tubages de forage
0			Limon brun à cailloutis crayeux					
1 <b>-</b>	- 0.66 -		Limon sableux beige à nombreux cailloutis crayeux	E.I. n °1				
2 -	2 -		Craie altérée grisâtre			mm (		
3 -	- 3 -		Craie grisâtre à blanchâtre	E.I.n °2		Carottier simple ø90 mm	Eau	
4.5	- 4 -					Carc		
5.5			Craie blanchâtre à quelques débris de silex					
6.5	<b>-</b> 6.74 <b>-</b>							
7 -	. 0.74							
7.5								
8 -	•							
9 -								
9.5								
10 -								
10.5								
11 -								



## Construction d'un dépôt de bus - RIVERY (80) – AMIENS METROPOLE









59286 Roost-Warendin

Tel: 03.27.90.13.77 - Fax: 03.27.90.41.66

Dossier Chantier Client
NO15 0575- RIVERY (80) AMIENS
2 Date de début METROPOLE
Forage 07/10/2016 Machine
SC3 07:00:00

	Χ	Υ
Observation	E2.3362057°	N49.917684°
· ·		

Prof. (m)	Prof. (m)	Figuré	Description	Numéro d'échantil	Niveaux d'eau (m)	Outils de forage	Fluides de forage	Tubages de forage
0	- 0.34 -		Limon brun à cailloutis crayeux					
0.5	<b>-</b> 1.08 <b>-</b>		Limon sableux beige à nombreux cailloutis crayeux					
1.5 =	1.00			E.I. n °1				
2 -		$[I_{+}^{\perp}I_{+}^{\perp}I_{+}^{\perp}]$	Craie altérée beige blanchâtre					
2.5						14 mm		
3 -	<b>-</b> 3.18 <b>-</b>			E.I.n _ °2		ole ø1	ם	
3.5						Carottier simple ø114 mm	Eau	
4 -						Caro		
4.5								
5 -			Craie grisâtre à blanchâtre					
5.5								
6 -								
6.5	<b>-</b> 6.5 <b>-</b>	- T + T + T +		-				
7 -								
7.5								
8 -								
8.5								
9 -								
9.5								
10 -								
10.5								
11 -								



## Construction d'un dépôt de bus - RIVERY (80) - AMIENS METROPOLE









59286 Roost-Warendin

Tel: 03.27.90.13.77 - Fax: 03.27.90.41.66

Dossier Chantier Client
NO15 0575-2 RIVERY (80) AMIENS METROPOLE

Forage Date de début ST14 06/10/2016 07:00:00

Y

E2.335744° N49.917516°

Prof. (m)	Prof. (m)	Figuré	Description	Niveaux d'eau (m)	Outils de forage	Tubages de forage
0	- 0.1 -	<del>                                      </del>	Limon marron			lorage
			Limon sableux beige			
1 .	- 1 -	<u>                                     </u>	Lillion sableux beige		14 mm	
2 -			Craie blanche		Tarière ø114 mm	
3 -	- 3 -	- 4 - 4 - 4 - 4.				
4 -						
5 -						
6 -						
7						
8 -						
9						
10 -						
11 -						
12 <b>-</b>	•					
13 '						
14 -						
15 '						
16 -						
17						



59286 Roost-Warendin Tel: 03.27.90.13.77 - Fax:

03.27.90.41.66

Dossier Chantier Client

NO15 0575-2 RIVERY (80) AMIENS METROPOLE

Forage Date de début ST15 06/10/2016

E2.3353774° N49.9178306°

07:00:00

Prof. (m)	Prof. (m)	Figuré	Description	Niveaux d'eau (m)	Outils de forage	Tubages de forage
0			Limon sableux beige			
1 .	- 0.3 -		Craie blanche		Tarière ø114 mm	
2 -					Tarière	
3 -	- 3 -					
4 -						
5						
6 -						
7						
8 -						
9						
10 -						
11 .						
12 -						
13 '						
14 -						
15 '						
16 -						
17 .						



ΑN	INEX	(E 5	: C	OUP	ES L	DES :	SONL	)AGE	S – P	'ARK	INGS	VL



59286 Roost-Warendin Tel: 03.27.90.13.77 - Fax:

03.27.90.41.66

Dossier Chantier Client

NO15 0575-2 RIVERY (80) AMIENS METROPOLE

Forage Date de début ST10 11/10/2016

07:00:00

Y

E2.3360209° N49.9159203°

Prof. (m)	Prof. (m)	Figuré	Description	Niveaux d'eau (m)	Outils de forage	Tubages de forage
1	<b>-</b> 1.5 <b>-</b>		Limon sableux beige		Tarière ø114 mm	
2 -			Craie beige à blanchâtre		Tarière ø	
3	- 3 -					
4 -						
5	•					
6 -						
7						
8 -						
9						
10 -						
11 -	•					
12 -						
13						
14 <b>-</b>						
15						
16 <b>-</b>						
17						



59286 Roost-Warendin Tel: 03.27.90.13.77 - Fax:

03.27.90.41.66

Dossier Chantier Client

NO15 0575-2 RIVERY (80) AMIENS METROPOLE

Forage Date de début ST11 11/10/2016

Y

E2.3366996° N49.9162456°

Prof. (m)	Prof. (m)	Figuré	Description	Niveaux d'eau (m)	Outils de forage	Tubages de forage
0			Limon marron			
1	- 0.8 - - 1.3 -		Limon sableux beige		14 mm	
2 -			Craie blanche humide		Tarière ø114 mm	
3	- 3 -					
4 -	-					
5						
6 -	-					
7						
8 -						
9						
10 -						
11						
12 -	-					
13						
14 -						
15						
16 -						
17						



59286 Roost-Warendin Tel: 03.27.90.13.77 - Fax:

03.27.90.41.66

Dossier Chantier Client

NO15 0575-2 RIVERY (80) AMIENS METROPOLE

Forage Date de début ST12 11/10/2016

E2.3362202° N49.9166166°

Prof. (m)	Prof. (m)	Figuré	Description	Niveaux d'eau (m)	Outils de forage	Tubages de forage
0			Limon marron			
1	- 0.7 - - 1.3 -		Limon sableux beige		14 mm	
2 -			Craie blanche		Tarière ⊘114 mm	
3	3 -	-+-+-+				
4 -	-					
5						
6 -						
7						
8 -						
9						
10 -	_					
11						
12 -						
13						
14 -						
15						
16 <b>-</b>	_					
17						



59286 Roost-Warendin

Tel: 03.27.90.13.77 - Fax: 03.27.90.41.66

Dossier Chantier Client
NO15 0575-2 RIVERY (80) AMIENS METROPOLE

Forage Date de début ST13 11/10/2016 07:00:00

Υ

E2.336594° N49.916842°

Prof.	Prof. (m)	Figuré	Description	Niveaux d'eau (m)	Outils de forage	Tubages de
				,		forage
0			Limon marron clair		Ш	
1 '	- 1 -		Limon sableux beige		114 n	
2 -	<b>-</b> 1.5 <b>-</b>		Craie blanche		Tarière ø114 mm	
3	- 3 -		Grate bianene			
4 -						
5						
6 <b>-</b>						
7						
8 -						
9						
10 -						
11 -						
12 <b>-</b>						
13						
14 -						
15						
16 <b>-</b>						
17						



		SONDAGES		
BUS				



Tel: 03.27.90.13.77 - Fax:

59286 Roost-Warendin 03.27.90.41.66

Dossier Chantier Client

NO15 0575-2 RIVERY (80) AMIENS METROPOLE

Forage Date de début 07/10/2016

07:00:00

E2.3351124° N49.9158367°

Drof	Drof (m)	Figuré	Description	Niveaux	Outile de	Tubers
(m)	Prof. (m)	rigure	Description	d'eau (m)	Outils de forage	de
0	_ 02 _	~~~~	Terre végétale marron clair			forage
1 -	- 0.2 -				Tarière ø114 mm	
2 -			Limon plus ou moins sableux marron clair		Tarière	
3 =	- 3 -					
4 -						
5 -						
6 <b>-</b>						
7 •						
8 -						
9 -						
10 -						
11 -						
12 <b>-</b>						
13 •						
14 -						
15 •						
16 <b>-</b>						



59286 Roost-Warendin

Tel: 03.27.90.13.77 - Fax: 03.27.90.41.66

Dossier Chantier Client
NO15 0575-2 RIVERY (80) AMIENS METROPOLE

Forage Date de début ST2 07/10/2016

Υ

2 07/10/2016 E2.3343262° N49.962029° 07:00:00

Prof. (m)	Prof. (m)	Figuré	Description	Niveaux d'eau (m)	Outils de forage	Tubages de forage
0			Limon marron			
2 -	- 0.7 -		Limon sableux beige avec blocs		Tarière ø114 mm	
3 -	- 3 -		Limon sableux beige		Ta	
4 -						
5 -						
6 <b>-</b>						
7						
8 -						
9						
10 -						
11 .						
12 -						
13 '						
14 -						
15						
16 <b>-</b>						
17 .						



59286 Roost-Warendin Tel: 03.27.90.13.77 - Fax: 03.27.90.41.66

Dossier Chantier Client
NO15 0575-2 RIVERY (80) AMIENS METROPOLE

Forage Date de début ST3 11/10/2016

X Y E2.3343324° N49.915752°

Prof. (m)	Prof. (m)	Figuré	Description	Niveaux d'eau (m)	Outils de forage	Tubages de forage
0	- 1.4 -		Limon marron clair avec blocs		114 mm	
2 -			Limon sableux beige		Tarière ø114 mm	
4 -	- 3 -					
5						
6 <b>-</b>						
8 -						
10 -						
11 •						
12 <b>-</b>						
14 -						
16 -						
17 .						



59286 Roost-Warendin

Tel: 03.27.90.13.77 - Fax: 03.27.90.41.66

Dossier Chantier Client
NO15 0575-2 RIVERY (80) AMIENS METROPOLE

Forage Date de début ST4 11/10/2016 07:00:00

Υ

E2.334096° N49.916639°

Prof. (m)	Prof. (m)	Figuré	Description	Niveaux d'eau (m)	Outils de forage	de
0		~~~~~~	Terre végétale marron			forage
U	- 0.2 -					
1 '	- 1.3 <b>-</b>		Limon sableux beige		114 mm	
2 -			Craie blanchâtre		Tarière ø114 mm	
3 '	- 3 -					
4 -						
5						
6 <b>-</b>						
7						
8 -						
9						
10 -						
11						
12 <b>-</b>						
13						
14 -						
15						
16 <b>-</b>						
17						



59286 Roost-Warendin Tel: 03.27.90.13.77 - Fax:

03.27.90.41.66

Dossier Chantier Client

NO15 0575-2 RIVERY (80) AMIENS METROPOLE

Forage Date de début ST5 11/10/2016

Υ

E2.3340583° N49.9174437°

Prof. (m)	Prof. (m)	Figuré	Description	Niveaux d'eau (m)	Outils de forage	Tubages de forage
0	_ 06 -		limon marron			
1 .	- 0.6 - - 1.4 -		Limon sableux beige		114 mm	
2 -			Craie blanche		Tarière ø114 mm	
3 -	- 3 -					
4 -						
5						
6 -						
7						
8 -						
9 -						
10 -						
11 .						
12 <b>-</b>	-					
13 '						
14 -						
15						
16 <b>-</b>						
17 .						



Z.A. de la Belleforière - Rue Fransisco Ferrer 59286 Roost-Warendin

Tel: 03.27.90.13.77 - Fax: 03.27.90.41.66

Dossier Chantier Client

NO15 0575-2 RIVERY (80) AMIENS METROPOLE

Forage Date de début ST6 11/10/2016 X Y E2.3343579°N49.91800548°

Prof. (m)	Prof. (m)	Figuré	Description	Niveaux d'eau (m)	Outils de forage	Tubages de forage
0	- 0.2 -		limon marron			_
1			Limon sableux beige		E	
	- 1.3 -				114	
2 -	_		Craie blanche		Tarière ø114 mm	
3	- 3 -	-				
4 -	-					
5						
6 -						
7						
8 -	-					
9						
10 -						
11						
12 -						
13						
14 -						
15						
16 <b>-</b>						
17	-					



59286 Roost-Warendin Tel: 03.27.90.13.77 - Fax:

03.27.90.41.66

Dossier Chantier Client

NO15 0575-2 RIVERY (80) AMIENS METROPOLE

Forage Date de début ST7 11/10/2016

Υ

E2.3347756° N49.9172235°

Prof. (m)	Prof. (m)	Figuré	Description	Niveaux d'eau (m)	Outils de forage	Tubages de forage
0			Limon marron			
1	<b>-</b> 0.7 <b>-</b>		Limon sableux beige		Tarière ø114 mm	
2 -			Craie blanche		Tarière	
3	- 3 -					
4 -						
5						
6 -						
7						
8 -						
9						
10 -						
12 -						
13						
14 -						
15						
16 <b>-</b>						
17						



59286 Roost-Warendin Tel: 03.27.90.13.77 - Fax:

03.2

Dossier Chantier Client

NO15 0575-2 RIVERY (80) AMIENS METROPOLE

Forage Date de début 11/10/2016

E2.3346739° N49.9165089°

27.90.41.66	010	11/10/20
11.30.41.00		07:00:00

Prof. (m)	Prof. (m)	Figuré	Description	Niveaux d'eau (m)	Outils de forage	Tubages de forage
0	- 0.3 -		Limon marron			
1 .	- 1.5 <b>-</b>		Limon marron clair à beige		Tarière ø114 mm	
			Limon sableux beige		ère Ø	
2 -	2 -		Craie blanche		Tariè	
3 -	- 3 -					
4 -						
5 •						
6 -						
7						
8 -						
9 •						
10 -						
11 •						
12 <b>-</b>						
13						
14 <b>-</b>						
15						
16 <b>-</b>						
17 .						



59286 Roost-Warendin Tel: 03.27.90.13.77 - Fax:

03.27.90.41.66

Dossier Chantier Client

NO15 0575-2 RIVERY (80) AMIENS METROPOLE

Forage Date de début ST9 07/10/2016

Y

E2.3353798° N49.9162751°

Prof. (m)	Prof. (m)	Figuré	Description	Niveaux d'eau (m)	Outils de forage	Tubages de forage
0		пппппппі	Limon marron			
	- 0.3 -					
1 .			Limon sableux beige		Tarière ø114 mm	
2 -					Tarië	
3 -	- 3 -					
4 -						
5 -						
6 -						
7						
8 -						
9						
10 -						
11 ·						
12 -						
13						
14 -						
15 '						
16 -						
17						



59286 Roost-Warendin

Tel: 03.27.90.13.77 - Fax: 03.27.90.41.66

Dossier Chantier Client
NO15 0575-2 RIVERY (80) AMIENS METROPOLE

Forage Date de début ST14 06/10/2016 07:00:00

Y

E2.335744° N49.917516°

Prof. (m)	Prof. (m)	Figuré	Description	Niveaux d'eau (m)	Outils de forage	Tubages de forage
0	- 0.1 -	<del>                                      </del>	Limon marron			lorage
			Limon sableux beige			
1 .	- 1 -	<u>                                     </u>	Lillion sableux beige		14 mm	
2 -			Craie blanche		Tarière ø114 mm	
3 -	- 3 -	- 4 - 4 - 4 - 4.				
4 -						
5 -						
6 -						
7						
8 -						
9						
10 -						
11 -						
12 <b>-</b>	•					
13 '						
14 -						
15 '						
16 -						
17						



59286 Roost-Warendin Tel: 03.27.90.13.77 - Fax:

03.27.90.41.66

Dossier Chantier Client

NO15 0575-2 RIVERY (80) AMIENS METROPOLE

Forage Date de début ST15 06/10/2016

E2.3353774° N49.9178306°

Prof. (m)	Prof. (m)	Figuré	Description	Niveaux d'eau (m)	Outils de forage	Tubages de forage
0			Limon sableux beige			
1 .	- 0.3 -		Craie blanche		Tarière ø114 mm	
2 -					Tarière	
3 -	- 3 -					
4 -						
5						
6 -						
7						
8 -						
9						
10 -						
11 .						
12 -						
13 '						
14 -						
15 '						
16 -						
17 .						



ANNEXE 7 : PV DES E	ESSAIS DE PERMEABILITE
---------------------	------------------------



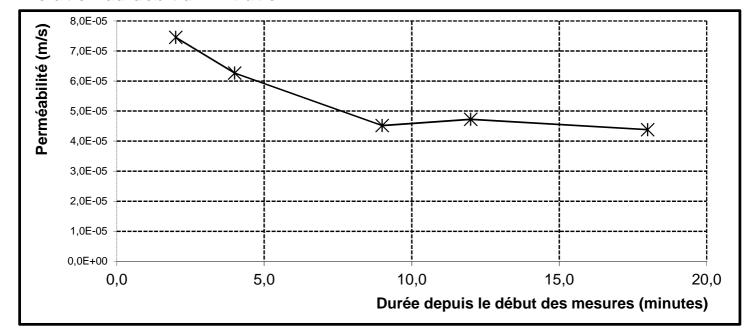
PERMEABILITE à la FOSSE à NIVEAU VARIABLE (infiltration à niveau variable en sondage ouvert)

**MO** interne

### Référence :

N° test / sondage :	MAT 1	
Référence R de profon	Niveau du sol	
Cote C haut du sondag	/	
Date du test :	05/10/2016	

N° dossier :	NO15 0575-2
Client :	Amiens Métropole
Affaire.	Dépôt Bus - Rue Paul Emile Victor


adresse: RIVERY (80)

### **Conditions:**

	Pos	sition :	parcelle agricole	
	Mé	étéo :	Temps sec	+10 °C
			Coupe du sol (m)	
0.00	à	0,25	Terre végétale	
0,25	à	0,50	Limon sableux marron cl	air
0,50	à		Sable limoneux beige à n	
5,00			crayeux	

Profondeur P (m):	5
Mode sondage :	Pelle mécanique 18 t
Température de l'eau (°C) :	+8,0
Longueur LO du sondage (cm	200,0
Largeur LA du sondage (cm)	100,0

### Evolution du débit d'infiltration :



Résultat :

225,9 mm/h Perméabilité ramenée à +20°C: 6,3E-05 m/s

Observations:

Tranche de sol testée (m) : -4,20 -5,00

Roost-Warendin, le 03/11/2016

P.V. N°: NO15 0575-2-MAT 1 version Visa du responsable du dossier:

Yon BOUTRY

**ABROTEC Nord** 



PERMEABILITE à la FOSSE à NIVEAU VARIABLE (infiltration à niveau variable en sondage ouvert)

MO interne

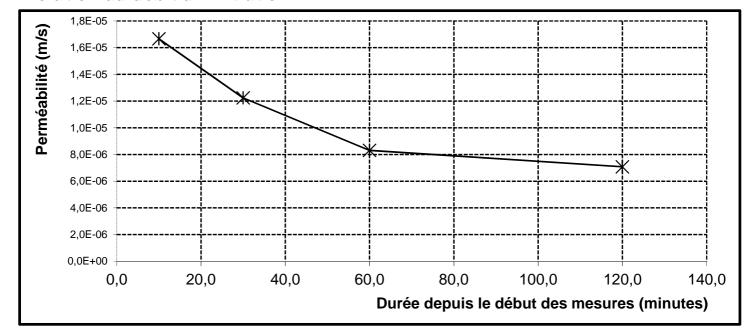
### Référence :

N° test / sondage :	MAT 2	
Référence R de profon	Niveau du sol	
Cote C haut du sondag	/	
Date du test :	05/10/2016	

N° dossier : NO15 0575-2

Client : Amiens Métropole

Affaire, Dépôt Bus - Rue Paul Emile Victor


adresse: RIVERY (80)

### **Conditions:**

	Pos	sition :	parcelle agricole	
	Ме	étéo :	Temps sec	+10 °C
			Coupe du sol (m)	
0.00	à	,	Terre végétale	
0,30	à	1,00	Limon marron	

Profondeur P (m):	1,0
Mode sondage :	Pelle mécanique 18 t
Température de l'eau (°C) :	+8,0
Longueur LO du sondage (cm)	150,0
Largeur LA du sondage (cm)	: 60,0

### Evolution du débit d'infiltration :



Résultat :

Perméabilité ramenée à +20°C : 38,2 mm/h
1,1E-05 m/s

Observations:

Tranche de sol testée (m): de -0,60 à -1,00

Roost-Warendin, le 03/11/2016

P.V. N°: NO15 0575-2-MAT 2 version 1

Visa du responsable du dossier :

Yon BOUTRY

**ABROTEC Nord** 



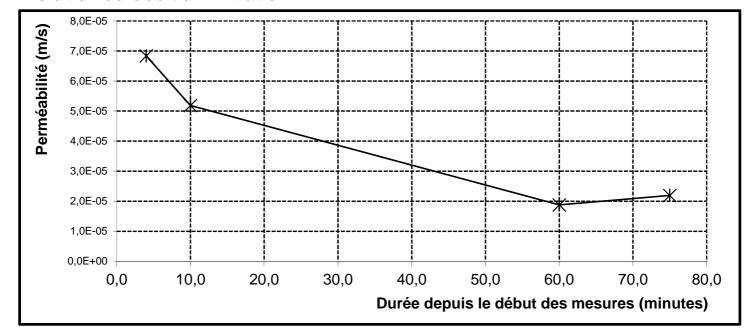
PERMEABILITE à la FOSSE à NIVEAU VARIABLE (infiltration à niveau variable en sondage ouvert)

**MO** interne

### Référence :

N° test / sondage :	MAT 3	
Référence R de profon	Niveau du sol	
Cote C haut du sondag	/	
Date du test :	05/10/2016	_

N° dossier :	NO15 0575-2
Client :	Amiens Métropole
Affaire,	Dépôt Bus - Rue Paul Emile Victor


adresse: RIVERY (80)

### **Conditions:**

	Pos	sition :	parcelle agricole	
	Mé	étéo :	Temps sec	+12 °C
			Coupe du sol (m)	
0.00	à	0,30	Terre végétale	
0,30	à	0,60	Limon marron	
0,60	à	1,30	Craie très altérée sableu	_
1,30				

Profondeur P (m):	1,3
Mode sondage :	Pelle mécanique 18 t
Température de l'eau (°C) :	+9,0
Longueur LO du sondage (cm	150,0
Largeur LA du sondage (cm)	: 60,0

### Evolution du débit d'infiltration :



Résultat :

Perméabilité ramenée à +20°C : 148,8 mm/h 4,1E-05 m/s

Observations:

Tranche de sol testée (m): de -0,70 à -1,30

Roost-Warendin, le 03/11/2016

P.V. N°: NO15 0575-2-MAT 3 version 1

Visa du responsable du dossier :

Yon BOUTRY

**ABROTEC Nord** 

ZA de la Belleforière - rue Francisco Ferrer - 59 286 ROOST-WARENDIN Tél : 03 27 90 13 77 - Fax : 03 27 90 41 66 - Site Web : www.abrotec.com

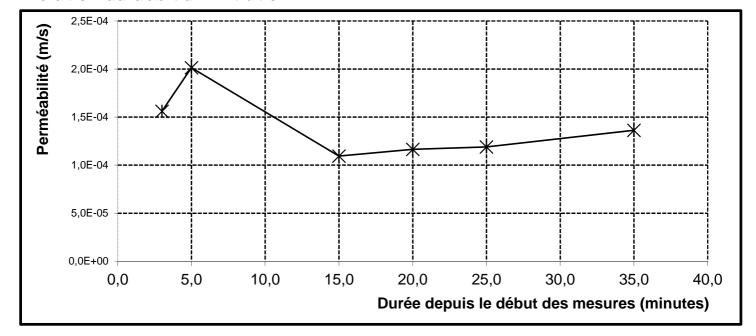


PERMEABILITE à la FOSSE à NIVEAU VARIABLE (infiltration à niveau variable en sondage ouvert)

**MO** interne

## Référence :

N° test / sondage :	MAT 4	
Référence R de profon	Niveau du sol	
Cote C haut du sondag	/	
Date du test :	06/10/2016	


N° dossier :	NO15 0575-2
Client :	Amiens Métropole
Affaire,	Dépôt Bus - Rue Paul Emile Victor
adresse:	RIVERY (80)

### **Conditions:**

	Pos	sition :	parcelle agricole	
	Mé	étéo :	Temps sec	+12 °C
			Coupe du sol (m)	
0.00	à	0,30	Terre végétale	
0,30	à	0,90	Limon marron	
0,90	à	4,00	Craie altérée plus ou mo	ins
4,00			sableuse à blocs	

Profondeur P (m):	4
Mode sondage :	Pelle mécanique 18 t
Température de l'eau (°C) :	+9,0
Longueur LO du sondage (cm	150,0
Largeur LA du sondage (cm)	: 60,0

### Evolution du débit d'infiltration :



Résultat :

Perméabilité ramenée à +20°C : 580,5 mm/h
1,6E-04 m/s

Observations:

Tranche de sol testée (m): de -3,10 à -4,00

Roost-Warendin, le

03/11/2016

P.V. N°: NO15 0575-2-MAT 4

version

Visa du responsable du dossier :

Yon BOUTRY

**ABROTEC Nord** 



PERMEABILITE à la FOSSE à NIVEAU VARIABLE (infiltration à niveau variable en sondage ouvert)

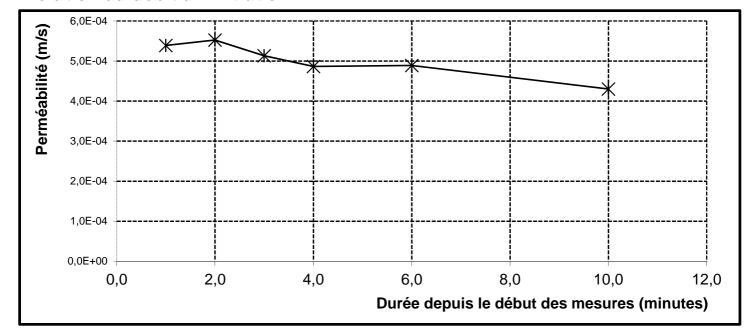
adresse:

**MO** interne

### Référence :

N° test / sondage :	MAT 5	
Référence R de profon	Niveau du sol	
Cote C haut du sondag	/	
Date du test :	06/10/2016	_

N° dossier :	NO15 0575-2
Client :	Amiens Métropole
Affaire,	Dépôt Bus - Rue Paul Emile Victor


RIVERY (80)

### **Conditions:**

	Pos	sition :	parcelle agricole	
	Météo :		Temps sec	+8 °C
			Coupe du sol (m)	
0.00	à	0,30	Terre végétale	
0,30	à	0,90	Limon marron	
0,90	à	3,00	Craie altérée plus ou moir	าร
3,00			sableuse à blocs	

Profondeur P (m):	3
Mode sondage :	Pelle mécanique 18 t
Température de l'eau (°C) :	+5,0
Longueur LO du sondage (cm	) : <b>150,0</b>
Largeur LA du sondage (cm)	: 60,0

### Evolution du débit d'infiltration :



Résultat :

Perméabilité ramenée à +20°C : 2733,6 mm/h 7,6E-04 m/s

Observations:

Tranche de sol testée (m): de -2,50 à -3,00

Roost-Warendin, le 03/11/2016

P.V. N°: NO15 0575-2-MAT 5 version 1

Visa du responsable du dossier :

Yon BOUTRY

**ABROTEC Nord** 

ZA de la Belleforière - rue Francisco Ferrer - 59 286 ROOST-WARENDIN
Tél: 03 27 90 13 77 - Fax: 03 27 90 41 66 - Site Web: www.abrotec.com



PERMEABILITE à la FOSSE à NIVEAU VARIABLE (infiltration à niveau variable en sondage ouvert)

**MO** interne

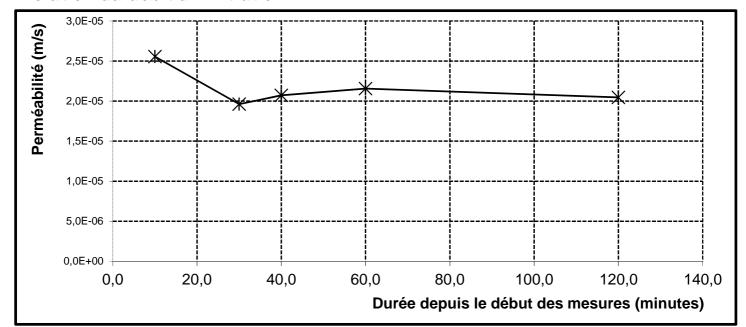
### Référence :

N° test / sondage :	MAT 6	
Référence R de profonde	eur :	Niveau du sol
Cote C haut du sondage :		/
Date du test : (	06/10/2016	

N° dossier : NO15 0575-2

Client : Amiens Métropole

Affaire, Dépôt Bus - Rue Paul Emile Victor


adresse: RIVERY (80)

### **Conditions:**

	Pos	sition :	parcelle agricole	
	Mé	étéo :	Temps sec	+10 °C
			Coupe du sol (m)	
0.00	à	0,30	Terre végétale	
0,30	à	0,60	Limon marron	
0,60	à	•	Craie altérée grisâtre	
1,50				

Profondeur P (m):	1,5
Mode sondage :	Pelle mécanique 18 t
Température de l'eau (°C) :	+8,0
Longueur LO du sondage (cm	150,0
Largeur LA du sondage (cm)	: 60,0

### Evolution du débit d'infiltration :



Résultat :

Perméabilité ramenée à +20°C : 102,4 mm/h 2,8E-05 m/s

Observations:

Tranche de sol testée (m): de -0,99 à -1,50

Roost-Warendin, le 03/11/2016

P.V. N°: NO15 0575-2-MAT 6 version 1

Visa du responsable du dossier :

Yon BOUTRY

**ABROTEC Nord** 



PERMEABILITE à la FOSSE à NIVEAU VARIABLE (infiltration à niveau variable en sondage ouvert)

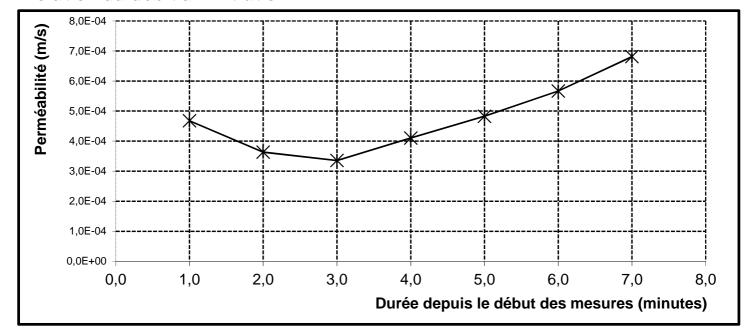
**MO** interne

### Référence :

N° test / sondage :	MAT 7	
Référence R de profon	deur :	Niveau du sol
Cote C haut du sondag	/	
Date du test :	06/10/2016	_

N° dossier :	NO15 0575-2
Client :	Amiens Métropole
Affaire	Dépôt Bus - Rue Paul Emile Victor

adresse: RIVERY (80)


Affaire,

### **Conditions:**

	Pos	sition :	parcelle agricole	
	Météo :		Temps sec	13
			Coupe du sol (m)	
0.00	à	0,30	Terre végétale	
0,30	à	1,40	Limon sableux beige	
1,40	à	2,00	Craie fracturée	
2,00				

Profondeur P (m):	2
Mode sondage :	Pelle mécanique 18 t
Température de l'eau (°C) :	+10,0
Longueur LO du sondage (cm	150,0
Largeur LA du sondage (cm)	: 60,0

### Evolution du débit d'infiltration :



Résultat :

2216,3 mm/h Perméabilité ramenée à +20°C: 6,2E-04 m/s

Observations:

Tranche de sol testée (m) : -1,40 -2,00

Il est probable que des retombées de limon aient commencé à obstruer les fractures et fissures au sein de la craie (perméabilité de fracture)

Roost-Warendin, le 03/11/2016

P.V. N°: NO15 0575-2-MAT 7 version Visa du responsable du dossier:

Yon BOUTRY

#### **ABROTEC Nord**



<b>ANNEXE 8:</b>	<b>PV DFS</b>	FSSAIS	FN I	<b>ABOR</b>	<b>ATOIRF</b>
AININLAL O .	F V DLJ	LJJAIJ	LIN L	.ADUIN	7 I O I I L



Version A

du

17/11/2016

## Détermination du classement G.T.R. d'un sol

NF P 11-300

Dossier N°: NO15 0575-2

Affaire: Dépôt Bus - RIVERY

Date de prélèvement : SEMAINE 40 mode : Tarière par : ABROTEC

Sondage ou Profil ou identification: ST1

Profondeur (m): 1,0 à 3,0 Mode de conservation : 1 sac fermé

N° enregistrement ABROTEC : Date de l'essai : 31-oct-16

**Description: Limon marron crayeux** 

<u>Granulométrie</u>	dm =	mm
	%passant à 50 mm =	100,0%
sur 0/5	50 mm %passant à 20 mm =	100,0%
sur 0/5	0 mm %passant à 5 mm =	99,5%
sur 0/5	0 mm %passant à 2 mm =	94,5%
sur 0/5	%passant à 0.08 mm =	80,1%
Teneur en eau (%)	sur 0/20 mm =	13,5%
(à 105 °C)	sur 0/5 mm =	18,2%
Valeur au Bleu de méthylène	VBS =	0,95
Limites d'Atterberg	W L =	NT
	W P =	NT
	I P =	NT
	I C =	NT
Indice Portant Immédiat	IPI =	2,2
	Masse volumique sèche (t/m³) =	1,86

CLASSIFICATION SELON LA G.T.R.	<b>A</b> ₁	th

#### Observation:

Nota: NC = Non Connu / NR = Non Réalisable / NT = Non testé Les analyses sont réalisées sur un échantillon prélevé dans des conditions spécifiques pouvant remanier le matériau ce qui peut rendre ce test non représentatif (des blocs peuvent être présents dans le sol et non dans l'échantillon par exemple).

#### **AGENCE Nord**



Version A

du

17/11/2016

## Détermination du classement G.T.R. d'un sol

NF P 11-300

Dossier N°: NO15 0575-2

Affaire: Dépôt Bus - RIVERY

Date de prélèvement : SEMAINE 40 mode : Tarière par : ABROTEC

Sondage ou Profil ou identification: \$T2

Profondeur (m): 0,7 à 2,1 Mode de conservation : 1 sac fermé

N° enregistrement ABROTEC : Date de l'essai : 31-oct-16

**Description: Limon marron crayeux** 

<u>Granulométrie</u>	dm =	mm
	%passant à 50 mm =	100,0%
sur 0/50 n	nm %passant à 20 mm =	100,0%
sur 0/50 m	nm %passant à 5 mm =	100,0%
sur 0/50 m	nm %passant à 2 mm =	95,7%
sur 0/50 n	nm %passant à 0.08 mm =	77,8%
Teneur en eau (%)	sur 0/20 mm =	12,7%
(à 105 °C)	sur 0/5 mm =	12,7%
Valeur au Bleu de méthylène	VBS =	0,71
Limites d'Atterberg	W L =	NT
	W P =	NT
	I P =	NT
	I C =	NT
Indice Portant Immédiat	IPI =	23,6
	Masse volumique sèche (t/m³) =	1,87

CLASSIFICATION SELON LA G.T.R.	<b>A</b> ₁	m

#### Observation:

Nota: NC = Non Connu / NR = Non Réalisable / NT = Non testé Les analyses sont réalisées sur un échantillon prélevé dans des conditions spécifiques pouvant remanier le matériau ce qui peut rendre ce test non représentatif (des blocs peuvent être présents dans le sol et non dans l'échantillon par exemple).

#### **AGENCE Nord**



Version A

du

17/11/2016

## Détermination du classement G.T.R. d'un sol

NF P 11-300

Dossier N°: NO15 0575-2

Affaire: Dépôt Bus - RIVERY

Date de prélèvement : SEMAINE 40 mode : Tarière par : ABROTEC

Sondage ou Profil ou identification: ST3

Profondeur (m): 0,0 à 1,4 Mode de conservation : 1 sac fermé

N° enregistrement ABROTEC : Date de l'essai : 31-oct-16

Description : Craie blanche altérée

<u>Granulométrie</u>	dm =	mm
	%passant à 50 mm =	100,0%
sur 0/50 m	m %passant à 20 mm =	100,0%
sur 0/50 m	m %passant à 5 mm =	99,5%
sur 0/50 m	m %passant à 2 mm =	96,1%
sur 0/50 m	m %passant à 0.08 mm =	82,9%
Teneur en eau (%)	sur 0/20 mm =	11,7%
(à 105 °C)	sur 0/5 mm =	11,7%
Valeur au Bleu de méthylène	VBS =	0,99
Limites d'Atterberg	W L =	NT
	W P =	NT
	I P =	NT
	IC=	NT
Indice Portant Immédiat	IPI =	34,8
	Masse volumique sèche (t/m³) =	1,80

CLASSIFICATION SELON LA G.T.R.	<b>A</b> ₁	s à ts

#### Observation:

Nota: NC = Non Connu / NR = Non Réalisable / NT = Non testé Les analyses sont réalisées sur un échantillon prélevé dans des conditions spécifiques pouvant remanier le matériau ce qui peut rendre ce test non représentatif (des blocs peuvent être présents dans le sol et non dans l'échantillon par exemple).

#### **AGENCE Nord**



Version A

du

17/11/2016

# Détermination du classement G.T.R. d'un sol

NF P 11-300

Dossier N°: NO15 0575-2

Affaire : Dépôt Bus - RIVERY

Date de prélèvement : SEMAINE 40 mode : Tarière par : ABROTEC

Sondage ou Profil ou identification: ST4

Profondeur (m): 0,2 à 1,3 Mode de conservation : 1 sac fermé

N° enregistrement ABROTEC : Date de l'essai : 15-nov-16

Description : Craie blanche altérée

<u>Granulométrie</u>	dm =	mm
	%passant à 50 mm =	100,0%
sur (	%passant à 20 mm =	100,0%
sur (	0/50 mm %passant à 5 mm =	99,1%
sur (	0/50 mm %passant à 2 mm =	94,3%
sur (	%passant à 0.08 mm =	64,9%
Teneur en eau (%)	sur 0/20 mm =	11,4%
(à 105 °C)	sur 0/5 mm =	11,4%
Valeur au Bleu de méthylène	VBS =	1,20
Limites d'Atterberg	W L =	NT
	W P =	NT
	IP=	NT
	I C =	NT
Indice Portant Immédiat	IPI =	6,2
	Masse volumique sèche (t/m³) =	1,88

CLASSIFICATION SELON LA G.T.R.	<b>A</b> ₁	h

#### Observation:

Nota: NC = Non Connu / NR = Non Réalisable / NT = Non testé Les analyses sont réalisées sur un échantillon prélevé dans des conditions spécifiques pouvant remanier le matériau ce qui peut rendre ce test non représentatif (des blocs peuvent être présents dans le sol et non dans l'échantillon par exemple).

#### **AGENCE Nord**



Version A

du

17/11/2016

# Détermination du classement G.T.R. d'un sol

NF P 11-300

Dossier N°: NO15 0575-2

Affaire : Dépôt Bus - RIVERY

Date de prélèvement : SEMAINE 40 mode : Tarière par : ABROTEC

Sondage ou Profil ou identification: ST6

Profondeur (m): 1,3 à 3,0 Mode de conservation : 1 sac fermé

N° enregistrement ABROTEC : Date de l'essai : 15-nov-16

Description : Craie blanche altérée à silex

15 mm Granulométrie dm =100,0% %passant à 50 mm = 100,0% sur 0/50 mm %passant à 20 mm = sur 0/50 mm %passant à 5 mm = 98,4% 94,6% sur 0/50 mm %passant à 2 mm = sur 0/50 mm 85,7% %passant à 0.08 mm = 23,3% sur 0/20 mm =Teneur en eau (%) °C) 23,3% (à sur 0/5 mm =Valeur au Bleu de méthylène VBS = 0,47 WL =NT **Limites d'Atterberg** WP =NT IP= NT IC =NT IPI = **Indice Portant Immédiat** 0,6 Masse volumique sèche (t/m³) = 1,64

CLASSIFICATION SELON LA G.T.R.	A 1	th

#### Observation:

Nota: NC = Non Connu / NR = Non Réalisable / NT = Non testé Les analyses sont réalisées sur un échantillon prélevé dans des conditions spécifiques pouvant remanier le matériau ce qui peut rendre ce test non représentatif (des blocs peuvent être présents dans le sol et non dans l'échantillon par exemple).

#### **AGENCE Nord**



Version

du

Α

17/11/2016

## Détermination du classement G.T.R. d'un sol

NF P 11-300

Dossier N°: NO15 0575-2

Affaire: Dépôt Bus - RIVERY

Date de prélèvement : SEMAINE 40mode : Tarièrepar : ABROTEC

Sondage ou Profil ou identification: ST8

Profondeur (m): 0,3 à 1,5 Mode de conservation : 1 sac fermé

N° enregistrement ABROTEC : Date de l'essai : 31-oct-16

**Description: Limon marron crayeux** 

<u>Granulométrie</u>	dm = %passant à 50 mm =	mm 100,0%
	/opassant a 50 mm =	100,070
sur 0/50 m	m %passant à 20 mm =	100,0%
sur 0/50 m	m %passant à 5 mm =	99,1%
sur 0/50 m	m %passant à 2 mm =	96,0%
sur 0/50 m	m %passant à 0.08 mm =	82,4%
Teneur en eau (%)	sur 0/20 mm =	11,8%
(à 0 °C)	sur 0/5 mm =	12,2%
Valeur au Bleu de méthylène	VBS =	0,58
Limites d'Atterberg	W L =	NT
	W P =	NT
	IP=	NT
	I C =	NT
Indice Portant Immédiat	IPI =	NT
	Masse volumique sèche (t/m³) =	NT

CLASSIFICATION SELON LA G.T.R.	<b>A</b> 1

#### Observation :

Nota: NC = Non Connu / NR = Non Réalisable / NT = Non testé Les analyses sont réalisées sur un échantillon prélevé dans des conditions spécifiques pouvant remanier le matériau ce qui peut rendre ce test non représentatif (des blocs peuvent être présents dans le sol et non dans l'échantillon par exemple).

#### **AGENCE Nord**



Version A

du

17/11/2016

## Détermination du classement G.T.R. d'un sol

NF P 11-300

Dossier N°: NO15 0575-2

Affaire: RIVERY

Date de prélèvement : SEMAINE 40 mode : Tarière par : ABROTEC

Sondage ou Profil ou identification: ST9

Profondeur (m): 1,0 à 3,0 Mode de conservation : 1 sac fermé

N° enregistrement ABROTEC : Date de l'essai : 15-nov-16

Description : Craie altérée beige

<u>Granulométrie</u>	dm =	10 mm
	%passant à 50 mm =	100,0%
sur 0/50 m	m %passant à 20 mm =	100,0%
sur 0/50 m	m %passant à 5 mm =	99,6%
sur 0/50 m	m %passant à 2 mm =	94,9%
sur 0/50 m	m %passant à 0.08 mm =	67,1%
Teneur en eau (%)	sur 0/20 mm =	13,5%
(à 0 °C)	sur 0/5 mm =	13,5%
Valeur au Bleu de méthylène	VBS =	0,68
Limites d'Atterberg	W L =	NT
	W P =	NT
	I P =	NT
	I C =	NT
Indice Portant Immédiat	IPI =	5,0
	Masse volumique sèche (t/m³) =	1,57

CLASSIFICATION SELON LA G.T.R.	<b>A</b> ₁	h

#### Observation:

Nota: NC = Non Connu / NR = Non Réalisable / NT = Non testé Les analyses sont réalisées sur un échantillon prélevé dans des conditions spécifiques pouvant remanier le matériau ce qui peut rendre ce test non représentatif (des blocs peuvent être présents dans le sol et non dans l'échantillon par exemple).

#### **AGENCE Nord**



Version A

du

17/11/2016

# Détermination du classement G.T.R. d'un sol

NF P 11-300

Dossier N°: NO15 0575-2

Affaire: RIVERY

Date de prélèvement : SEMAINE 40 mode : Tarière par : ABROTEC

Sondage ou Profil ou identification: ST9

Profondeur (m): 0,0 à 1,0 Mode de conservation : 1 sac fermé

N° enregistrement ABROTEC : Date de l'essai : 31-oct-16

Description : Craie altérée beige

<u>Granulométrie</u>	dm = %passant à 50 mm =	mm 100,0%
sur 0/50	mm %passant à 20 mm =	100,0%
sur 0/50	mm %passant à 5 mm =	99,4%
sur 0/50	mm %passant à 2 mm =	95,9%
sur 0/50	mm %passant à 0.08 mm =	82,3%
Teneur en eau (%)	sur 0/20 mm =	12,1%
(à 0°C)	sur 0/5 mm =	12,1%
Valeur au Bleu de méthylène	VBS =	0,82
Limites d'Atterberg	W L =	NT
	W P =	NT
	IP=	NT
	I C =	NT
Indice Portant Immédiat	IPI =	25,8
	Masse volumique sèche (t/m³) =	1,59

CLASSIFICATION SELON LA G.T.R.	<b>A</b> ₁	s à ts

#### Observation:

Nota: NC = Non Connu / NR = Non Réalisable / NT = Non testé Les analyses sont réalisées sur un échantillon prélevé dans des conditions spécifiques pouvant remanier le matériau ce qui peut rendre ce test non représentatif (des blocs peuvent être présents dans le sol et non dans l'échantillon par exemple).

#### **AGENCE Nord**



Version A

du

17/11/2016

# Détermination du classement G.T.R. d'un sol

NF P 11-300

Dossier N°: NO15 0575-2

Affaire: RIVERY

Date de prélèvement : SEMAINE 40 mode : Tarière par : ABROTEC

Sondage ou Profil ou identification: ST11

Profondeur (m): 1,3 à 3,0 Mode de conservation : 1 sac fermé

N° enregistrement ABROTEC : Date de l'essai : 02-nov-16

Description : Craie altérée blanche

 Granulométrie
 dm =
 10 mm

 %passant à 50 mm =
 100,0%

 sur 0/50 mm
 %passant à 20 mm =
 100,0%

 sur 0/50 mm
 %passant à 5 mm =
 98,7%

 sur 0/50 mm
 %passant à 2 mm =
 95,9%

sur 0/50 mm %passant à 0.08 mm = **88,6%** 

Teneur en eau (%) sur 0/20 mm = 23,0%(à 0 °C) sur 0/5 mm = 24,5%

Valeur au Bleu de méthylène VBS = 0,47

Limites d'Atterberg W L = NT

W P = **NT** 

IP= NT

IC = NT

Indice Portant Immédiat IPI = 0,0

Masse volumique sèche  $(t/m^3) = 1,62$ 

**CLASSIFICATION SELON LA G.T.R.** 

 $A_1$  th

#### Observation:

Nota: NC = Non Connu / NR = Non Réalisable / NT = Non testé Les analyses sont réalisées sur un échantillon prélevé dans des conditions spécifiques pouvant remanier le matériau ce qui peut rendre ce test non représentatif (des blocs peuvent être présents dans le sol et non dans l'échantillon par exemple).

#### **AGENCE Nord**



Version A

du

17/11/2016

## Détermination du classement G.T.R. d'un sol

NF P 11-300

Dossier N°: NO15 0575-2

Affaire: RIVERY

**Date de prélèvement : SEMAINE 40 mode : Tarière par : ABROTEC** 

Sondage ou Profil ou identification: ST12

Profondeur (m): 0,7 à 1,3 Mode de conservation : 1 sac fermé

N° enregistrement ABROTEC : Date de l'essai : 31-oct-16

Description : Craie altérée

<u>Granulométrie</u>		dm =	10 mm
		%passant à 50 mm =	100,0%
	0/50	0/ = = = = = + > 00 = = =	400.00/
	sur 0/50 mm	%passant à 20 mm =	100,0%
5	sur 0/50 mm	%passant à 5 mm =	99,5%
5	sur 0/50 mm	%passant à 2 mm =	96,3%
\$	sur 0/50 mm	%passant à 0.08 mm =	85,6%
Teneur en eau (%)		sur 0/20 mm =	15,9%
(à 0 °C)		sur 0/5 mm =	16,0%
Valeur au Bleu de méthylène		VBS =	0,35
Limites d'Atterberg		W L =	NT
		WP=	NT
		IP=	NT
		IC=	NT

Masse volumique sèche  $(t/m^3) = NT$ 

CLASSIFICATION SELON LA G.T.R.

#### Observation:

Nota: NC = Non Connu / NR = Non Réalisable / NT = Non testé Les analyses sont réalisées sur un échantillon prélevé dans des conditions spécifiques pouvant remanier le matériau ce qui peut rendre ce test non représentatif (des blocs peuvent être présents dans le sol et non dans l'échantillon par exemple).

**Indice Portant Immédiat** 

#### **AGENCE Nord**

NT

IPI =



Version A

du

17/11/2016

### Détermination du classement G.T.R. d'un sol

NF P 11-300

Dossier N°: NO15 0575-2

Affaire: RIVERY

Date de prélèvement : SEMAINE 40 mode : Tarière par : ABROTEC

Sondage ou Profil ou identification: ST16

Profondeur (m): 0,0 à 1,5 Mode de conservation : 1 sac fermé

N° enregistrement ABROTEC : Date de l'essai : 19-oct-16

Description : Craie altérée beige

<u>Granulométrie</u>	dm =	mm
	%passant à 50 mm =	100,0%
sur 0/50 mr	m %passant à 20 mm =	100,0%
sur 0/50 mr	'	98,0%
sur 0/50 mr	•	93,9%
sur 0/50 mr	•	79,7%
Teneur en eau (%)	sur 0/20 mm =	9,3%
(à 0°C)	sur 0/5 mm =	9,3%
Valeur au Bleu de méthylène	VBS =	0,83
<u>Limites d'Atterberg</u>	W L =	NT
	W P =	NT
	I P =	NT
	I C =	NT
Indice Portant Immédiat	IPI =	46,9
	Masse volumique sèche (t/m³) =	1,74

CLASSIFICATION SELON LA G.T.R.	<b>A</b> ₁	s à ts

#### Observation:

Nota: NC = Non Connu / NR = Non Réalisable / NT = Non testé Les analyses sont réalisées sur un échantillon prélevé dans des conditions spécifiques pouvant remanier le matériau ce qui peut rendre ce test non représentatif (des blocs peuvent être présents dans le sol et non dans l'échantillon par exemple).

#### **AGENCE Nord**

ZI DORIGNIES Rue Becquerel - BP 30340 59351 DOUAI CEDEX Tél: 03.27.90.13.77 Mail: nord@abrotec.fr

GTR ST16 Procès-verbal



Version

du

Α

17/11/2016

### Détermination du classement G.T.R. d'un sol

NF P 11-300

Dossier N°: NO15 0575-2

Affaire: RIVERY

Date de prélèvement : SEMAINE 40 mode : Tarière par : ABROTEC

Sondage ou Profil ou identification: ST17

Profondeur (m): 1,0 à 3,0 Mode de conservation : 1 sac fermé

N° enregistrement ABROTEC : Date de l'essai : 15-nov-16

**Description: Limon marron crayeux** 

<u>Granulométrie</u>	dm =	15 mm
	%passant à 50 mm =	100,0%
sur 0/50 mr	m %passant à 20 mm =	100,0%
sur 0/50 mr	m %passant à 5 mm =	95,3%
sur 0/50 mr	m %passant à 2 mm =	91,8%
sur 0/50 mr	m %passant à 0.08 mm =	83,9%
Teneur en eau (%)	sur 0/20 mm =	20,5%
(à 0°C)	sur 0/5 mm =	23,8%
Valeur au Bleu de méthylène	VBS =	2,42
Limites d'Atterberg	W L =	NT
	W P =	NT
	IP=	NT
	I C =	NT
Indice Portant Immédiat	IPI =	1,1
	Masse volumique sèche (t/m³) =	1,65

CLASSIFICATION SELON LA G.T.R.	$A_1$ th	

#### Observation:

Nota: NC = Non Connu / NR = Non Réalisable / NT = Non testé Les analyses sont réalisées sur un échantillon prélevé dans des conditions spécifiques pouvant remanier le matériau ce qui peut rendre ce test non représentatif (des blocs peuvent être présents dans le sol et non dans l'échantillon par exemple).

#### **AGENCE Nord**

ZI DORIGNIES Rue Becquerel - BP 30340 59351 DOUAI CEDEX Tél: 03.27.90.13.77 Mail: nord@abrotec.fr



Version A

du

17/11/2016

### Détermination du classement G.T.R. d'un sol

NF P 11-300

Dossier N°: NO15 0575-2

Affaire: RIVERY

Date de prélèvement : SEMAINE 40 mode : Tarière par : ABROTEC

Sondage ou Profil ou identification: ST18

Profondeur (m): 1,0 à 3,0 Mode de conservation : 1 sac fermé

N° enregistrement ABROTEC : Date de l'essai : 31-oct-16

Description : Craie altérée

<u>Granulométrie</u>	dm =	mm
	%passant à 50 mm =	100,0%
sur 0/50 m	m %passant à 20 mm =	100,0%
sur 0/50 m	m %passant à 5 mm =	98,3%
sur 0/50 m	m %passant à 2 mm =	91,3%
sur 0/50 m	m %passant à 0.08 mm =	68,6%
Teneur en eau (%)	sur 0/20 mm =	10,5%
(à 0 °C)	sur 0/5 mm =	10,7%
Valeur au Bleu de méthylène	VBS =	0,47
Limites d'Atterberg	W L =	NT
	W P =	NT
	IP=	NT
	I C =	NT
Indice Portant Immédiat	IPI =	6,7
	Masse volumique sèche (t/m³) =	1,71

CLASSIFICATION SELON LA G.T.R.	<b>A</b> ₁	h

#### Observation :

Nota: NC = Non Connu / NR = Non Réalisable / NT = Non testé Les analyses sont réalisées sur un échantillon prélevé dans des conditions spécifiques pouvant remanier le matériau ce qui peut rendre ce test non représentatif (des blocs peuvent être présents dans le sol et non dans l'échantillon par exemple).

#### **AGENCE Nord**

ZI DORIGNIES Rue Becquerel - BP 30340 59351 DOUAI CEDEX Tél: 03.27.90.13.77 Mail: nord@abrotec.fr



Version A

du

17/11/2016

## Détermination du classement G.T.R. d'un sol

NF P 11-300

Dossier N°: NO15 0575-2

Affaire: RIVERY

Date de prélèvement : SEMAINE 40 mode : Tarière par : ABROTEC

Sondage ou Profil ou identification: ST19

Profondeur (m): 1,0 à 3,0 Mode de conservation : 1 sac fermé

N° enregistrement ABROTEC : Date de l'essai : 15-nov-16

Description : Craie altérée blanche

<u>Granulométrie</u> dm = **10 mm** %passant à 50 mm = **100.0%** 

sur 0/50 mm %passant à 20 mm = **100,0%** 

sur 0/50 mm %passant à 5 mm = **96,7%** sur 0/50 mm %passant à 2 mm = **91,4%** 

sur 0/50 mm %passant à 0.08 mm = **81,2%** 

<u>Teneur en eau (%)</u> sur 0/20 mm = **21,2%** 

 $(a \ 0 \ ^{\circ}C)$  sur 0/5 mm = 21,2%

<u>Valeur au Bleu de méthylène</u> VBS = **0,57** 

<u>Limites d'Atterberg</u> W L = **NT** 

W P = **NT** 

IP= **NT** 

IC = NT

Indice Portant Immédiat IPI = 0,6

Masse volumique sèche ( $t/m^3$ ) = 1,64

**CLASSIFICATION SELON LA G.T.R.** 

 $A_1$  th

#### Observation:

Nota: NC = Non Connu / NR = Non Réalisable / NT = Non testé Les analyses sont réalisées sur un échantillon prélevé dans des conditions spécifiques pouvant remanier le matériau ce qui peut rendre ce test non représentatif (des blocs peuvent être présents dans le sol et non dans l'échantillon par exemple).

#### **AGENCE Nord**

ZI DORIGNIES Rue Becquerel - BP 30340 59351 DOUAI CEDEX Tél : 03.27.90.13.77 Mail : nord@abrotec.fr



# CLASSIFICATION DES SOLS SELON LE G.T.R 92 - FICHE D'IDENTIFICATION -

Dossier n°: NO15 0575-2

Affaire: RIVERY

Client: Amiens Métropole

Matériau à l'essai		
Sondage : SC1		
Profondeur :	vers 1.0 m	
Nature : Marne limoneuse marron be		

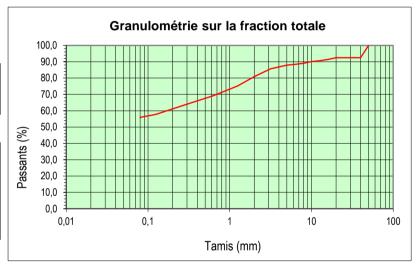
Date des essais : 27/10/16

Opérateur : C.Le.

Température : 105 °C

Site: Dépôt Bus

Mode de prélt : Carottage


Date prélt : S40

Réception n° : 24/10/2016

#### Granularité

Norme NF P 94-056

Tamis (en mm)	Passants (en %)	Sur fraction 0/50
50	100,0	(en %)
20	92,5	92,5
5	87,9	87,9
2	80,9	80,9
0,08	55,9	55,9



 Argilosité	Norme	Valeur
Valeur de bleu VBs	NF P94-068	0,9
Etat hydrique	Norme	Valeur

Etat hydrique	Norme	Valeur
Teneur en eau Wn (en %)	NF P94-050	14,1

à Titre indicatif :

Comportement mécanique	Norme	Valeur

Etat hydrique (suite)	Norme	Valeur

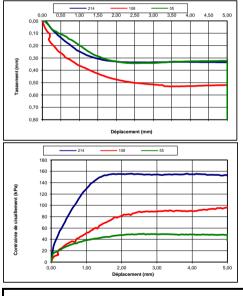
$\sim$ 1	A C	CE	' _l	$\cdot$	
	$\Delta$	·>-	ווחי	ISO	)

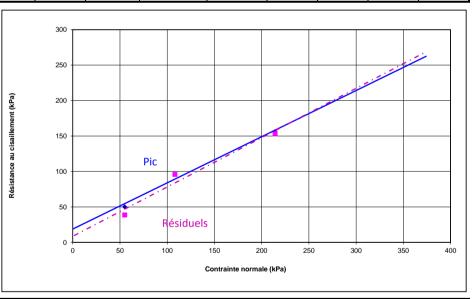
**A1** 

Limons (ou arênes) peu plastiques, sables fins peu pollués,loess,...



#### **ESSAI DE CISAILLEMENT RECTILIGNE A LA BOITE**


Cisaillement Direct


NF P 94-071-1

N° dossier :	NO15-0575-2	Echantillon	16
Affaire :	Rivery	Sondage n°:	SC 01
Allalle .	Rivery	Profondeur (m):	01.0 - 02.0 m
Client :	Amiens Métropôle	Date de prélévement :	S40
Client.	Amiens Metropole	Date d'essai :	02/11/2016

00:	2,65	g.cm-3	estimée	Caractéristiques de	Ø 60,00		mm
ρs :		g.cm-s	mesurée	l'éprouvette	Н	20,00	mm
Vitesse de cisaillement :	25		µm/min	Nature du matériau	Marne limoneuse beige marron avec d cailloutis calcaires		

	Caractéristiques des éprouvettes de sol												
		Avant consolidation Après consolidation c				Après cisaillement	σ·	Paramétr	es de résis	tance au ci	saillement		
N°	$\rho h_i$	$\rho d_i$	$W_{i}$	e _i	Sr _i	ρd	T100	$W_{f}$		$\tau_{f,p}$	$\delta I_{f,p}$	$\tau_{f,f}$	$\delta I_{f,f}$
	gcm ⁻³	gcm ⁻³	%	C _i	(%)	gcm ⁻³	min	%	kPa	kPa	mm	kPa	mm
1	2,07	1,81	14,11	0,46	80,65	1,95	9,00	17,97	214	156,0	2,29	153,5	5,01
2	1,98	1,73	14,11	0,53	70,87	1,84	3,61	18,74	108	96,0	4,96	96,0	5,01
3	2,00	1,75	14,11	0,51	72,99	1,82	2,25	17,99	55	50,1	2,62	38,7	5,01



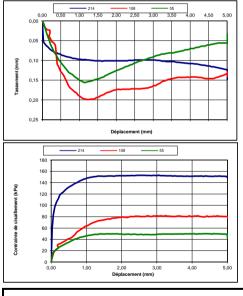


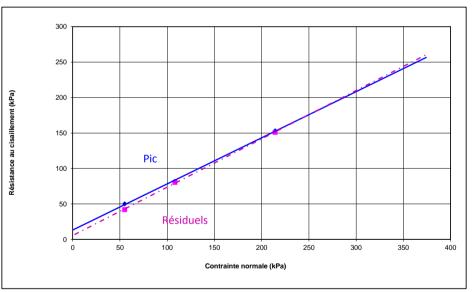
RESULTATS DE L'ESSAI									
Résistance de pic	c' _p =	19	kPa		Résistance à l'état final	c' _f =	9	kPa	
Resistance de pic	Ф'р=	33	۰		Resistance a retat ililai	Φ' _f =	35	0	

ait à Etrechy, le	21 novembre 2016	Le Responsable de l'Essai :
PV n° :		C.LEGOUGE



#### **ESSAI DE CISAILLEMENT RECTILIGNE A LA BOITE**


Cisaillement Direct


NF P 94-071-1

N° dossier :	NO15-0575-2	Echantillon	17
Affaire :	Rivery	Sondage n°:	SC 01
Allalle .	Rivery	Profondeur (m):	2.0-3.0m
Client :	Amiens Métropôle	Date de prélévement :	S40
Client.	Amiens Metropole	Date d'essai :	02/11/2016

ps	2,65	g.cm-3	estimée	Caractéristiques de	Ø 60,00		mm
ρs	-	g.cm-3	mesurée	l'éprouvette	Н	20,00	mm
Vitesse de cisaillement	25		μm/min	Nature du matériau	Craie marnograveleuse blanch		nchatre

	Caractéristiques des éprouvettes de sol													
		Ava	nt consolida	ation	n		nsolidation	Après cisaillement	σ [,]	Paramétr	Paramétres de résistance au cisaillement			
N°	$\rho h_i$	$\rho d_i$	Wi	e _i	Sr _i	ρd	T100	$W_{f}$		$\tau_{\text{f,p}}$	$\delta I_{f,p}$	$\tau_{f,f}$	$\delta I_{f,f}$	
	gcm ⁻³	gcm ⁻³	%	C _i	(%)	gcm ⁻³	min	%	kPa	kPa	mm	kPa	mm	
1	1,94	1,56	24,31	0,70	92,01	1,71	4,41	24,01	214	153,2	3,05	151,0	5,01	
2	1,99	1,60	24,31	0,66	97,89	1,70	4,00	27,12	108	81,8	3,26	80,5	5,01	
3	2,00	1,61	24,31	0,65	99,02	1,67	3,61	25,03	55	50,2	4,42	42,0	5,01	





RESULTATS DE L'ESSAI									
Résistance de pic	c' _p =	13	kPa		Résistance à l'état final	c' _f =	5	kPa	
resistance de pic	Ф' _p =	33	۰		Resistance a retat ililai	Φ' _f =	34	0	

Observations : Essais sur la fraction 0 - 3.15 mm de l'echantillon

ait à Etrechy, le	21 novembre 2016	Le Responsable de l'Essai :
PV n° :		C.LEGOUGE



# CLASSIFICATION DES SOLS SELON LE G.T.R 92 - FICHE D'IDENTIFICATION -

Dossier n°: NO15 0575-2

Affaire: RIVERY

Client: Amiens Métropole

Matériau à l'essai					
Sondage :	SC2				
Profondeur :	vers 1.0 m				
Nature :	Marne sableuse marron beige avec cailloutis calcaire				

Date des essais : 31/10/16

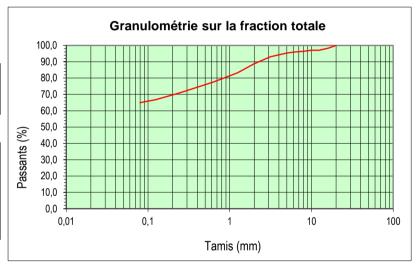
Opérateur : C.Le.

Température : 105 °C

Site:

Mode de prélt : Carottage

Dépôt Bus


Date prélt : S40

Réception n° : 24/10/2016

#### Granularité

Norme NF P 94-056

Tamis (en mm)	Passants (en %)	Sur fraction 0/50
50	100,0	(en %)
20	100,0	100,0
5	95,4	95,4
2	88,7	88,7
0,08	65,0	65,0



Argilosité	Norme	Valeur
Valeur de bleu VBs	NF P94-068	0,8
	_	
Etat hydrique	Norme	Valeur

Norme	Valeur
	Norme

Etat hydrique	Norme	Valeur
Teneur en eau Wn (en %)	NF P94-050	18,4

à Titre indicatif :

Etat hydrique (suite)	Norme	Valeur	

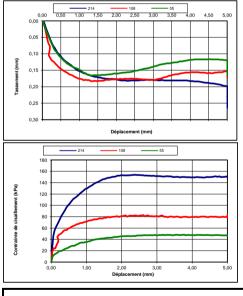
### **CLASSE du SOL**

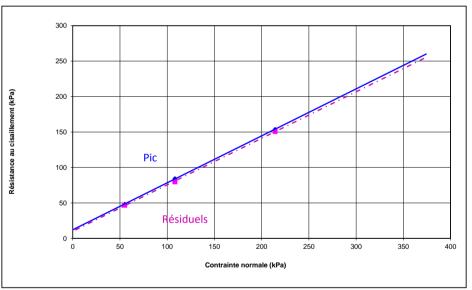
**A1** 

Limons (ou arênes) peu plastiques, sables fins peu pollués,loess,...



#### **ESSAI DE CISAILLEMENT RECTILIGNE A LA BOITE**


Cisaillement Direct


NF P 94-071-1

N° dossier :	NO15-0575-2	Echantillon	18
Affaire :	Sondage n°:		SC 02
Allalle .	Rivery	Profondeur (m):	01.0 - 02.0 m
Client :	Amiens Métropôle	Date de prélévement :	S40
Client.		Date d'essai :	02/11/2016

	00:	2,65	a cm 2	g.cm-3 estimée Caractéristiques		Ø	60,00	mm
	ρs :		g.ciii-s	mesurée	l'éprouvette	Н	20,00	mm
Vitesse de cisaillem	ent :	25		μm/min	Nature du matériau	Craie limoneuse altérée beige à gra		à graviers

	Caractéristiques des éprouvettes de sol												
	Avant consolidation			Après consolidation		Après cisaillement	σ	Paramétres de résistance au cisaillement					
N°	$\rho h_i$	$\rho d_i$	Wi		Sr _i	ρd	T100	$W_{f}$		$\tau_{f,p}$	$\delta I_{f,p}$	$\tau_{f,f}$	$\delta I_{f,f}$
	gcm ⁻³	gcm ⁻³	%	e _i	(%)	gcm ⁻³	min	%	kPa	kPa	mm	kPa	mm
1	2,17	1,80	20,33	0,47	100,00	2,06	2,25	17,73	214	153,8	2,40	150,8	5,01
2	2,18	1,81	20,33	0,46	100,00	1,96	1,56	17,85	108	84,2	5,01	79,8	5,01
3	2,19	1,82	20,33	0,46	100,00	1,90	1,00	17,72	55	48,2	3,77	46,8	5,01



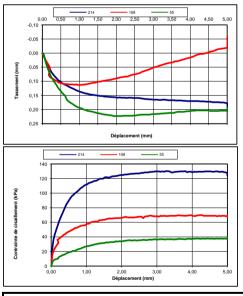


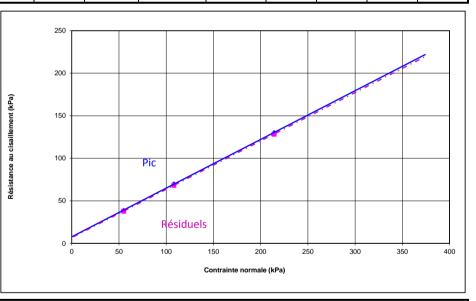
RESULTATS DE L'ESSAI								
Résistance de pic	c' _p =	12	kPa		Résistance à l'état final	c' _f =	10	kPa
Resistance de pic	Ф' _p =	34	۰		Resistance a retat iiiai	Φ' _f =	33	0

ait à Etrechy, le	21 novembre 2016	Le Responsable de l'Essai :
PV n° :		M.LEIBBRANDT



#### **ESSAI DE CISAILLEMENT RECTILIGNE A LA BOITE**


Cisaillement Direct


NF P 94-071-1

N° dossier :	NO15 0575-2	Echantillon	19
Affaire :	RIVERY		SC 02
Allalle .	RIVERT	Profondeur (m):	03,0 - 04,0 m
Client :	Amiens Métropôle	Date de prélévement :	S40
Client :		Date d'essai :	02/11/2016

os ·	2,65	estimée	Caractéristiques de	Ø	60,00	mm	
μ3 .	ρs: g.cm-3 mesurée		l'éprouvette	Н	20,00	mm	
Vitesse de cisaillement :	25		µm/min	Nature du matériau	Craie marnosableuse blanc-beige m ferme avec des graviers		0

	Caractéristiques des éprouvettes de sol												
		Ava	nt consolida	ation		Après coi	nsolidation	Après cisaillement	o,	Paramétr	es de résist	tance au cis	saillement
N°	$\rho h_i$	$\rho d_i$	Wi	0	Sr _i	ρd	T100	$W_{f}$		$\tau_{f,p}$	$\delta I_{f,p}$	$\tau_{f,f}$	$\delta I_{f,f}$
	gcm ⁻³	gcm ⁻³	%	e _i	(%)	gcm ⁻³	min	%	kPa	kPa	mm	kPa	mm
1	2,05	1,59	28,50	0,66	100,00	1,77	1,00	24,84	214	130,2	3,25	128,4	5,01
2	2,05	1,60	28,50	0,66	100,00	1,70	0,56	25,56	108	70,0	4,27	68,3	5,01
3	2,06	1,60	28,50	0,66	100,00	1,70	0,25	26,27	55	38,9	5,01	37,8	5,01





RESULTATS DE L'ESSAI									
Résistance de pic	c' _p =	8	kPa		Résistance à l'état final	c' _f =	7 kPa	kPa	
Resistance de pic	Ф' _р =	30	۰		Resistance a retat iiilai	Φ' _f =	30	0	

ait à Etrechy, le	21 novembre 2016	Le Responsable de l'Essai :
PV n° :		M.LEIBBRANDT



# CLASSIFICATION DES SOLS SELON LE G.T.R 92 - FICHE D'IDENTIFICATION -

Dossier n°: NO15 0575-2

Affaire: RIVERY

Client: Amiens Métropole

	Matériau à l'essai				
	Sondage :	SC3			
	Profondeur :	vers 1.0 m			
#	Nature :	Sable marneux blanchâtre avec cailloutis calcaire et silex (craie)			

Date des essais : 27/10/16

Opérateur : C.Le.

Température : 105 °C

Site:

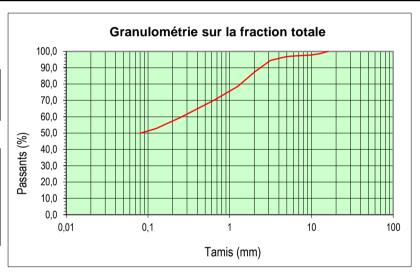
Dépôt Bus

Mode de prélt :

Carottage

Date prélt :

S40


Réception n°:

24/10/2016

#### Granularité

Norme NF P 94-056

Tamis	Passants	Sur fraction
(en mm)	(en %)	0/50
50	100,0	(en %)
20	100,0	100,0
5	96,9	96,9
2	87,2	87,2
0,08	49,8	49,8



Argilosité	Norme	Valeur
Valeur de bleu VBs	NF P94-068	0,4
Etat hydrique	Norme	Valeur

Etat hydrique	Norme	Valeur
Teneur en eau Wn (en %)	NF P94-050	22,6

à Titre indicatif :

Comportement mécanique	Norme	Valeur

Etat hydrique (suite)	Norme	Valeur

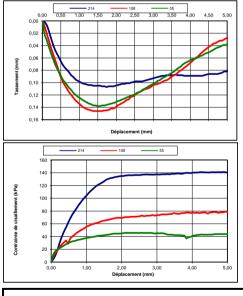
$\sim$ 1	AS.	$\sim$ $\sim$		$\sim$	<b>^</b> 1
	$\Delta \sim$	<b>&gt;</b> ⊢	all	•	11

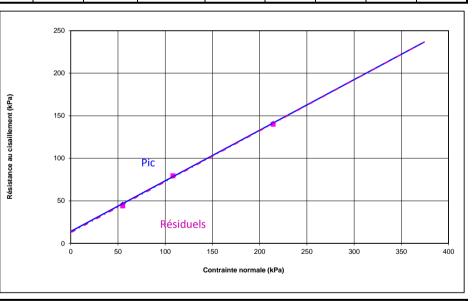
**A1** 

Limons (ou arênes) peu plastiques, sables fins peu pollués,loess,...



#### **ESSAI DE CISAILLEMENT RECTILIGNE A LA BOITE**


Cisaillement Direct


NF P 94-071-1

N° dossier :	NO15-0575-2	Echantillon	20
Affaire :	Rivery	Sondage n°:	SC 03
Allaire :	Rivery	Profondeur (m):	01.0 - 02.0 m
Client :	Amiono Mátropôlo	Date de prélévement :	S40
	Amiens Métropôle	Date d'essai :	02/11/2016

ps	2,65	estimée	Caractéristiques de	Ø	60,00	mm		
μs		g.cm-3 mesurée l'éprouvette		l'éprouvette	Н	20,00	mm	
Vitesse de cisaillement	25	μm/min		Nature du matériau	Craie blanche molle avec de graviers			

	Caractéristiques des éprouvettes de sol												
	Avant consolidation		Avant consolidation Après consolidation		Après cisaillement	σ,	Paramétres de résistance au cisaillement						
N°	ρh _i	ρd _i	Wi	e _i	Sr _i	ρd	T100	$W_{f}$		$\tau_{f,p}$	$\delta I_{f,p}$	$\tau_{f,f}$	$\delta I_{f,f}$
	gcm ⁻³	gcm ⁻³	%	G _i	(%)	gcm ⁻³	min	%	kPa	kPa	mm	kPa	mm
1	2,06	1,63	26,22	0,63	110,86	1,75	1,56	24,01	214	141,0	4,26	140,1	5,39
2	2,08	1,65	26,22	0,61	114,47	1,76	0,64	23,86	108	79,5	5,34	79,5	5,39
3	2,05	1,62	26,22	0,63	109,49	1,74	0,25	24,27	55	45,9	2,58	44,1	5,39



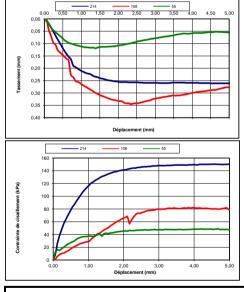


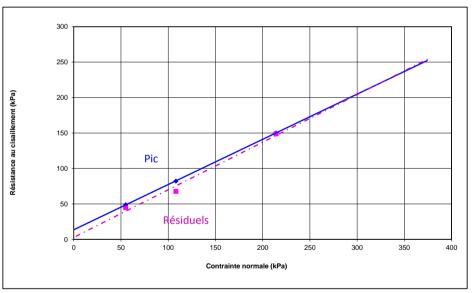
RESULTATS DE L'ESSAI												
Résistance de pic	c' _p =	14	kPa		Résistance à l'état final	c' _f =	13	kPa				
Resistance de pic	Ф' _p =	31	۰		Resistance a retat ililai	Φ' _f =	31	0				

ait à Etrechy, le 21 novembre 2016



#### **ESSAI DE CISAILLEMENT RECTILIGNE A LA BOITE**


Cisaillement Direct


NF P 94-071-1

N° dossier :	NO15-0575-2	Echantillon	21
Affaire :	Rivery	Sondage n°:	SC 03
Allalle .	Rivery	Profondeur (m):	02.5 - 03.5 m
Client :	Amiens Métropôle	Date de prélévement :	S40
Client :		Date d'essai :	02/11/2016

	00:	2,65	a.cm. 2	estimée	Caractéristiques de	Ø 60,00		mm
	ρs:		g.cm-3 mesurée		l'éprouvette	Н	20,00	mm
Vite	esse de cisaillement :	25		µm/min	Nature du matériau	Craie bl	anche molle à ferme a graviers	avec des

	Caractéristiques des éprouvettes de sol												
					Après coi	nsolidation	Après cisaillement	σ [,]	Paramétr	es de résist	tance au cis	saillement	
N°	$\rho h_i$	$\rho d_i$	$W_{i}$	ei	Sr _i	ρd	T100	$W_{f}$		$\tau_{f,p}$	$\delta I_{f,p}$	$\tau_{\text{f,f}}$	$\delta I_{f,f}$
	gcm ⁻³	gcm ⁻³	%	e _i	(%)	gcm ⁻³	min	%	kPa	kPa	mm	kPa	mm
1	1,94	1,56	24,74	0,70	93,48	1,72	4,00	23,68	214	150,2	4,50	149,0	5,22
2	1,94	1,55	24,74	0,71	92,72	1,63	0,81	24,58	108	82,3	3,96	67,8	5,22
3	1,94	1,55	24,74	0,71	92,95	1,59	0,64	26,46	55	48,8	4,20	44,8	5,22





RESULTATS DE L'ESSAI												
Résistance de pic	c' _p =	14	kPa		Résistance à l'état final	c' _f =	3	kPa				
Resistance de pic	Ф' _p =	33	۰		Resistance a retat iiilai	Φ' _f =	34	0				

ait à Etrechy, le	21 novembre 2016	Le Responsable de l'Essai :
PV n° :		M.LEIBBRANDT



# CLASSIFICATION DES SOLS SELON LE G.T.R 92 - FICHE D'IDENTIFICATION -

Dossier n°: NO15 0575-2

Affaire: RIVERY

Client: Amiens Métropole

Matériau à l'essai					
Sondage :	PM1				
Profondeur :	de 1.0 à 1.5 m				
Nature :	Limon marron				

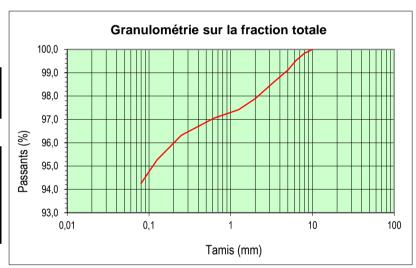
Date des essais : 07/10/16

Opérateur : C.Le.

Température : 105 °C

Site: Dépôt Bus

Mode de prélt : Pelle Mécanique


Date prélt : 05/10/2016

Réception n° : 24/10/2016

#### Granularité

Norme NF P 94-056

Tamis (en mm)	Passants (en %)	Sur fraction 0/50
50	100,0	(en %)
20	100,0	100,0
5	99,1	99,1
2	97,9	97,9
0,08	94,3	94,3



Argilosité	Norme	Valeur
Valeur de bleu VBs	NF P94-068	3,3

Etat hydrique	Norme	Valeur
Teneur en eau Wn (en %)	NF P94-050	27,0
Optimum Proctor WOPN (en %)	NF P94-093	16,6

à Titre indicatif :

Comportement mécanique	Norme	Valeur

Etat hydrique (suite)	Norme	Valeur
Indice portant immédiat IPI	NF P94-078	0,0

$\sim$ 1	$\wedge$	$\sim$		$\sim$	$\sim$ 1	
	AS	>-	all			

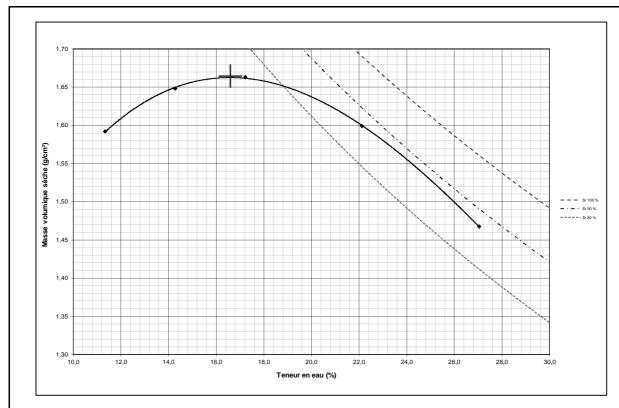
A2th

Sables fins argileux, limons, argiles et marnes peu plastiques,...



#### **ESSAI PROCTOR NORMAL**

Norme


NF P 94-093

_				
ſ	Dossier N°:	NO15 0575-2	Echantillon n°:	15
	Affaire : RIVERY	Sondage n°:	PM1	
		RIVERI	Profondeur (m):	de 1.0 à 1.5 m
	Client :	Amiens Métropole	Date de prélèvement :	05/10/2016
		Amiens Metropole	Date d'essai :	07/11/2016

Nature du matériau : Limon marron brun avec présence de radicelles

D _{max} du matériau :	10	mm
Refus à 20 mm :	0	%
Masse volumique des particules solides $\rho_S$ :	2,70	g/cm ³

Type de moule utilisé : CBR



RESULTATS DE L'ESSAI				
A L'OPTIMUN PROCTOR valeurs non corrigées valeurs corrigées				
<b>Teneur en eau</b> NF P 94-050	W opn :	16,6	%	
Masse volumique sèche	ρd opn :	1,66	g/cm ³	

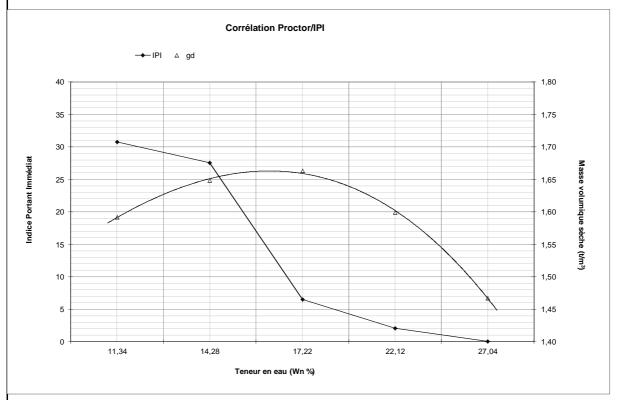
Teneur en eau naturelle  $\mathbf{W_n}$  : 27,0 % NF P 94-050

PV n° :		Fait à Etrechy, le	21 novembre 2016
Enregistrement :	PV005-01	Le Responsable de l'Essai :	
Enregistrement.	version du 8-12-2010	C.Legouge	



#### **Courbe IPI**

Norme


NF P94-078

	Dossier N°:	NO15 0575-2	Echantillon n°:	-
	Affaire : RIVERY	Sondage n°:	PM1	
		RIVERI	Profondeur (m):	de 1.0 à 1.5 m
Client: Amiens	Amiens Métropole	Date de prélèvement :	05/10/2016	
	Annens wetropole	Date d'essai :	07/11/2016	

Nature du matériau : Limon marron brun avec présence de radicelles

D _{max} du matériau :	10	mm	
Refus à 20 mm :	0	%	
Masse volumique des particules solides $\rho_S$ :	2,70	g/cm ³	

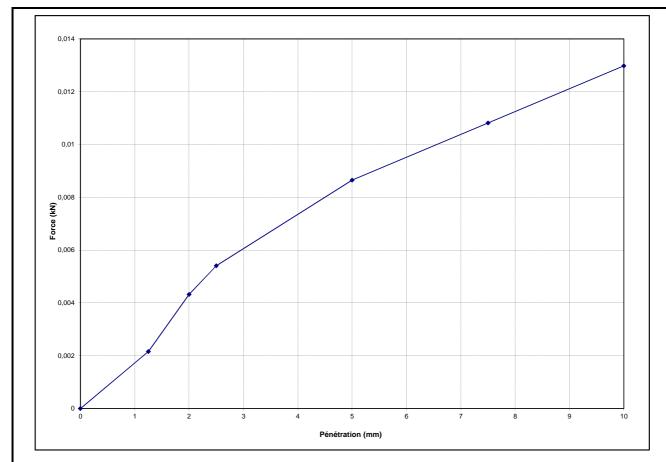
Type de moule utilisé : CBR



RESULTATS DE L'ESSAI				
A L'OPTIMUN PROCTOR valeurs non corrigées valeurs corrigées				
Teneur en eau W opn :	16,6 %			
Masse volumique sèche ρd opn :	<b>1,66</b> g/cm ³			

Teneur en eau naturelle  $W_n$ : 27,0 % NF P 94-050

PV n° :	Fait à Etrechy, le	21 novembre 2016
Enrogiatroment :	Le Responsable de l'Essai :	
Enregistrement :	C.Legouge	




Norme NF P 94-078

Dossier N°:	NO15 0575-2	Echantillon n°:	-
Affaire :	RIVERY	Sondage n° :	PM1
	RIVERT	Profondeur (m):	de 1.0 à 1.5 m
Client :	Amiene Métropole	Date de prélèvement :	05/10/2016
	Amiens Métropole	Date d'essai :	07/11/2016

Nature du matériau : Limon marron brun avec présence de radicelles

	D _{max} du matériau :	10	mm	
	Refus à 20 mm :	0,0	%	Type de moule utilisé : CBR
Masse volumiqu	ue des particules solides ps :	2.70	g/cm ³	



RESULTATS DE L'ESSAI				
Teneur en eau de confection de l'éprouvette NF P 94-050	w	:	27,0	%
Masse volumique sèche de l'éprouvette	$\rho_{\text{d}}$	:	1,47	g/cm ³
Indice Portant Immédiat	IPI	:	0,0	

Teneur en eau naturelle W_n: 27,0 %

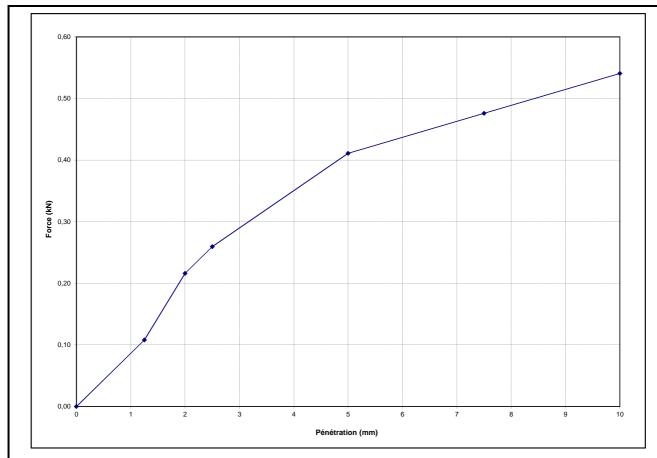
NF P 94-050

Teneur en eau à l'Optimum Proctor: 16,6 %

NF P 94-093

PV n°:	Fait à Etrechy, le 21 novembre 2016	
Faragistram out .	Le Responsable de l'Essai :	
Enregistrement :	C.Legouge	




Norme NF P 94-078

Dossier N°:	NO15 0575-2	Echantillon n°:	-
Affaire :	RIVERY	Sondage n°: PM1	
	RIVERT	Profondeur (m): de 1.0 à 1.5 m	de 1.0 à 1.5 m
Client :	Amiens Métropole	Date de prélèvement :	05/10/2016
Client:	Amiens Metropole	Date d'essai :	07/11/2016

ĺ	Nature du matériau :		Limon marr	on brun avec présence de radicelles
ı	D. du matériau :	10	mm	

D _{max} du matériau :	10	mm	
Refus à 20 mm :	0,0	%	
Masse volumique des particules solides $\rho_S$ :	2,70	a/cm ³	

Type de moule utilisé : CBR



RESULTATS DE L'ESSAI				
Teneur en eau de confection de l'éprouvette NF P 94-050	w	:	22,1	%
Masse volumique sèche de l'éprouvette	$\rho_{d}$	:	1,60	g/cm ³
Indice Portant Immédiat	IPI	:	2,1	

Teneur en eau naturelle W _n :	27,0	%
NF P 94-050		

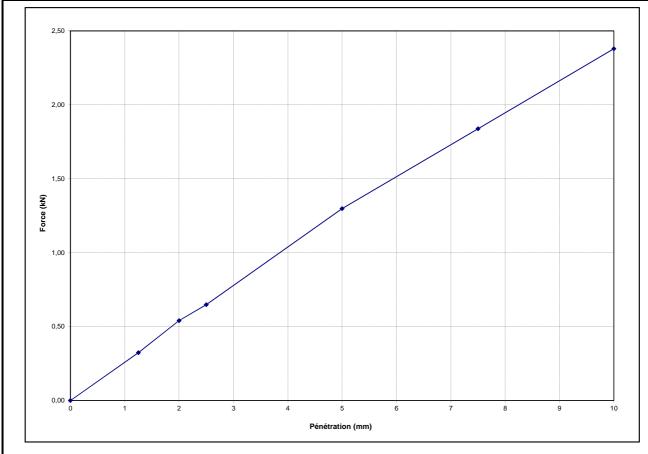
Teneur en eau à l'Optimum Proctor : 16,6 %

NF P 94-093

Observations	
Observations	

PV n°:	Fait à Etrechy, le	21 novembre 2016
For a gistra mount .	Le Responsable de l'Essai :	
Enregistrement :	C.Legouge	




Norme NF P 94-078

Dossier N°:	NO15 0575-2	Echantillon n°:	-
Affaire :	RIVERY	Sondage n° :	PM1
Affaire: RIVERY	RIVERT	Profondeur (m):	de 1.0 à 1.5 m
Client :	Amiono Mátropolo	Date de prélèvement :	05/10/2016
Client : Amiens Métropole		Data d'assai :	07/11/2016

Nature du matériau :	Limon marron brun avec présence de radicelles

D _{max} du matériau :	10	mm
Refus à 20 mm :	0,0	%
Masse volumique des particules solides ps :	2.70	n/cm ³

Type de moule utilisé : CBR



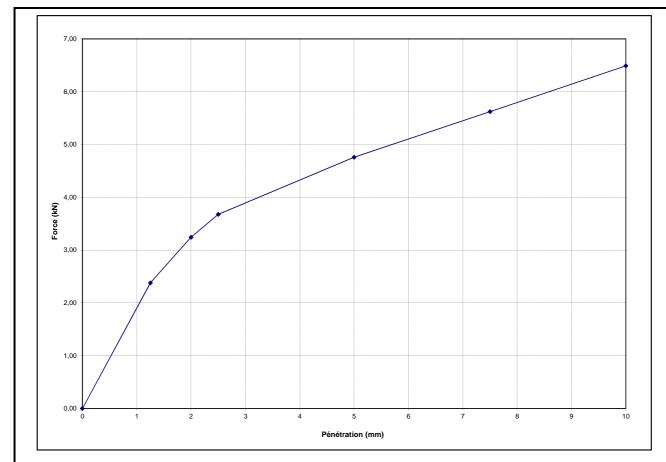
	RESUL	TATS	DE L'ESSAI	
Teneur en eau de confection de l'éprouvette NF P 94-050	w	;	17,2	%
Masse volumique sèche de l'éprouvette	$\rho_{d}$	:	1,66	g/cm ³
Indice Portant Immédiat	IPI	:	6,5	

Teneur en eau naturelle W_n: 27,0 %
NF P 94-050

Teneur en eau à l'Optimum Proctor : 16,6 %

NF P 94-093

PV n°:	Fait à Etrechy, le	21 novembre 2016
Enrogiatroment :	Le Responsable de l'Essai :	
Enregistrement :	C.Legouge	




Norme NF P 94-078

Dossier N°:	NO15 0575-2	Echantillon n°:	-
Affaire: RIVERY	DIVEDY	Sondage n° :	PM1
	RIVERT	Profondeur (m):	de 1.0 à 1.5 m
Client :	Amiono Mátronolo	Date de prélèvement :	05/10/2016
	Amiens Métropole	Date d'essai :	07/11/2016

Nature du matériau : Limon marron brun avec présence de radicelles

D _{max} du matériau :	10	mm	
Refus à 20 mm :	0,0	%	Type de moule utilisé : CBR
Masse volumique des particules solides $\rho_S$ :	2,70	g/cm ³	



	RESUL	TATS	DE L'ESSAI	
Teneur en eau de confection de l'éprouvette NF P 94-050	w	:	14,3	%
Masse volumique sèche de l'éprouvette	$\rho_{d}$	÷	1,65	g/cm ³
Indice Portant Immédiat	IPI	:	27,5	

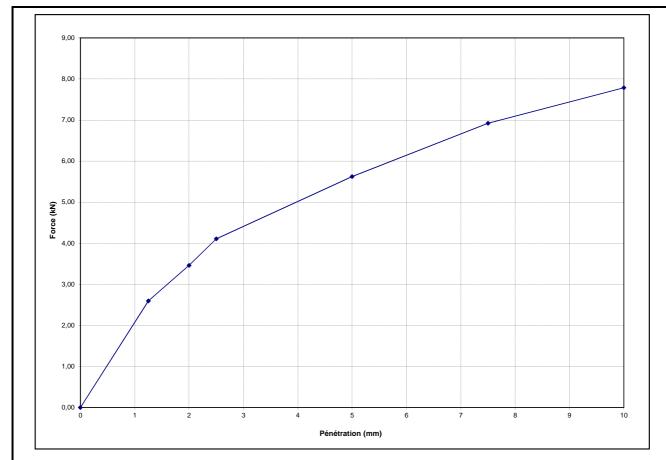
Teneur en eau naturelle W_n: 27,0 %

NF P 94-050

Teneur en eau à l'Optimum Proctor: 16,6 %

NF P 94-093

PV n°:	Fait à Etrechy, le	21 novembre 2016
Enregistrement :	Le Responsable de l'Essai :	
Emegistrement.	C.Legouge	




Norme NF P 94-078

Dossier N°:	NO15 0575-2	Echantillon n° :	-	
Affaire :	RIVERY	Sondage n° :	PM1	
	RIVERT	Profondeur (m):	de 1.0 à 1.5 m	
Client :	Amiana Métranala	Date de prélèvement :	05/10/2016	
Client :	Amiens Métropole	Date d'essai :	07/11/2016	

Nature du matériau :	Limon marron brun avec présence de radicelles

D _{max} du matériau :	10	mm	
Refus à 20 mm :	0,0	%	Type de moule utilisé : CBR
Masse volumique des particules solides $\rho_{\text{S}}$ :	2,70	g/cm ³	



	RESUL	TATS	DE L'ESSAI	
Teneur en eau de confection de l'éprouvette NF P 94-050	w	:	11,3	%
Masse volumique sèche de l'éprouvette	$\rho_{d}$	:	1,59	g/cm ³
Indice Portant Immédiat	IPI	:	30,8	

Teneur en eau naturelle W_n: 27,0 %

NF P 94-050

Teneur en eau à l'Optimum Proctor : 16,6 %

NF P 94-093

PV n°:	Fait à Etrechy, le	21 novembre 2016
Enrogistroment :	Le Responsable de l'Essai :	
Enregistrement :	C.Legouge	



#### ESSAI D'EVALUATION DE L'APTITUDE D'UN MATERIAU AU TRAITEMENT Réalisé suivant la norme NF P 94-100

**Dossier**: NO15 0575-2

Date de prélèvement : 05/10/2016 Mode de prélèvement : Pelle mécanique Affaire: Dépôt Bus - RIVERY Clent: Amiens Métropôle

**Début d'essai** : 10/11/16 Fin d'essai : 17/11/16

	Echantillon	PM1	N.	Lienan manuna huun	
Matériau essayé	Profondeur	de 1.0 à 1.5 m	Nature	Limon marron brun	
	Teneur en eau	23,6%	Classification selon (NF P 11-300)	A2th	
	Teneur en eau du matériau traité	1 20.6% IMag	Masse volumique humide	1,98	
Mélange	Nature des produits de	Chaux (CaO)		1,5%	
	traitement	ROLAC PI	Dosages	7,0%	

Mesure du Gonflement Volumique (Gv en %)							
Confection des éprouvettes	Eprouvette	1	2	3	Moyenne		
	Teneur en eau	20,6%	20,6%	20,6%	20,6%		
	Masse Volumique Apparente/Humide (t/m3)	1,98	1,96	1,98	1,98		
Gonflement Volumique (Gv en %)	Mesuré après 7 jours d'immersion	2,71%	0,93%	2,05%	1,89%		

Caractéristique Mécanique (Résistance en Traction Brésilien)							
Confection des éprouvettes	Eprouvette	Α	В	С	Moyenne		
	Teneur en eau	20,6%	20,6%	20,6%	20,6%		
	Masse Volumique Apparente/Humide (g/cm3)	1,98	1,96	1,98	1,98		
Caractéristique Mécanique	Résistance en compression diamétrale (Mpa)	0,15	0,18	0,19	0,17		

Aptitude du matériau au traitement pour les critères de gonflement	ADAPTE
Aptitude du matériau au traitement pour les critères de Résistance	DOUTEUX

Observation	Attention suspicion de M.O.					
Opérateur	C.Le.					



Laboratoires WESSLING S.A.R.L. 3 Avenue de Norvège · ZI de Courtaboeuf 91140 Villebon-sur-Yvette Tél. +33 (0)1 64 47 65-38 · Fax +33 (0)9 72 53 90 48 labo.paris@wessling.fr · www.wessling.fr

N° rapport d'essai UPA16-028879-1 Commande n°.: UPA-09555-16 Date 28.10.2016

#### Informations sur les échantillons

Echantillon-n°	16-169422-01	16-169422-02	16-169422-03	16-169422-04
Date de réception:	21.10.2016	21.10.2016	21.10.2016	21.10.2016
Désignation	ST16 9-10,5m	ST17 6-7,5m	ST18 0-1m	ST19 1-3m
Type d'échantillons:	Sol	Sol	Sol	Sol
Prélèvement:	05.10.2016	05.10.2016	05.10.2016	05.10.2016
Récipient:	2VB	2VB	2VB	2VB
Température de réception (C°):	12°C	12°C	12°C	12°C
Début des analyses:	21.10.2016	21.10.2016	21.10.2016	21.10.2016
Fin des analyses:	28.10.2016	28.10.2016	28.10.2016	28.10.2016

### Résultats d'analyse

N° d'échantillon  Désignation d'échantillon			16-169422-01	16-169422-02	16-169422-03	16-169422-04
			ST16 9-10,5m	ST17 6-7,5m	ST18 0-1m	ST19 1-3m
Paramètre Unité LQ						
Extrait à l'acide chlorhydrique	MS-A		24.10.2016	24.10.2016	24.10.2016	24.10.2016

#### Analyse physique

N° d'échantillon  Désignation d'échantillon		16	-169422-01	16-169422-02	16-169422-03	16-169422-04
			ST16 9-10,5m	ST17 6-7,5m	ST18 0-1m	ST19 1-3m
Paramètre	Unité L	.Q				
Matière sèche	% mass MB		84,9	83,3	90	83,7

#### Paramètres globaux / Indices

N° d'échantillon		16-169422-01	16-169422-02	16-169422-03 ST18 0-1m	16-169422-04 ST19 1-3m
Désignation d'échanti	llon	ST16 9-10,5m	ST17 6-7,5m		
Paramètre	Unité LO	Ω			
Degré d'acidité	ml/kg MS-A	<2	<2	<2	<2
Sulfates (SO4) calc.	mg/kg MS-A	390	330	480	330
Soufre (S)	mg/kg MS-A	130	110	160	110